

VSN-Pipelines

A repository of pipelines for single-cell data analysis in Nextflow DSL2.

[image: GitHub release (latest by date)] [https://github.com/vib-singlecell-nf/vsn-pipelines/releases] [image: Documentation Status] [https://vsn-pipelines.readthedocs.io/en/latest/?badge=latest] [image: Zenodo] [https://zenodo.org/badge/latestdoi/199477571] [image: Gitter] [https://gitter.im/vib-singlecell-nf/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge] [image: Nextflow] [https://www.nextflow.io/]

Full documentation is available on Read the Docs [https://vsn-pipelines.readthedocs.io/en/latest/], or take a look at the Quick Start [https://vsn-pipelines.readthedocs.io/en/latest/getting-started.html#quick-start] guide.

This main repo contains multiple workflows for analyzing single cell transcriptomics data, and depends on a number of tools, which are organized into subfolders within the src/ directory.
The VIB-Singlecell-NF [https://github.com/vib-singlecell-nf] organization contains this main repo along with a collection of example runs (VSN-Pipelines-examples [https://vsn-pipelines-examples.readthedocs.io/en/latest/]).
Currently available workflows are listed below.

If VSN-Pipelines is useful for your research, consider citing:

	VSN-Pipelines All Versions (latest): 10.5281/zenodo.3703108 [https://doi.org/10.5281/zenodo.3703108].

Raw Data Processing Workflows

These are set up to run Cell Ranger and DropSeq pipelines.

Raw Data Processing Workflows

	Pipeline / Entrypoint

	Purpose

	Documentation

	cellranger

	Process 10x Chromium data

	cellranger [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#cellranger]

	demuxlet_freemuxlet

	Demultiplexing

	demuxlet_freemuxlet [https://vsn-pipelines.readthedocs.io/en/develop/pipelines.html#demuxlet-freemuxlet]

	nemesh

	Process Drop-seq data

	nemesh [https://vsn-pipelines.readthedocs.io/en/develop/pipelines.html#nemesh]

Single Sample Workflows

The Single Sample Workflows perform a “best practices” scRNA-seq analysis. Multiple samples can be run in parallel, treating each sample separately.

Single Sample Workflows

	Pipeline / Entrypoint

	Purpose

	Documentation

	single_sample

	Independent samples

	[image: Single-sample Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#single-sample-single-sample]

	single_sample_scenic

	Ind. samples + SCENIC

	[image: Single-sample SCENIC Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#single-sample-scenic-single-sample-scenic]

	scenic

	SCENIC GRN inference

	[image: SCENIC Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#scenic-scenic]

	scenic_multiruns

	SCENIC run multiple times

	[image: SCENIC Multi-runs Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#scenic-multiruns-scenic-multiruns-single-sample-scenic-multiruns]

	single_sample_scenic_multiruns

	Ind. samples + multi-SCENIC

	[image: Single-sample SCENIC Multi-runs Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#scenic-multiruns-scenic-multiruns-single-sample-scenic-multiruns]

	single_sample_scrublet

	Ind. samples + Scrublet

	[image: Single-sample Scrublet Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#single-sample-scrublet-single-sample-scrublet]

	decontx

	DecontX

	[image: DecontX Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#decontx-decontx]

	single_sample_decontx

	Ind. samples + DecontX

	[image: Single-sample DecontX Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#single-sample-decontx-single-sample-decontx]

	single_sample_decontx_scrublet

	Ind. samples + DecontX + Scrublet

	[image: Single-sample DecontX Scrublet Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#single-sample-decontx-scrublet-single-sample-decontx-scrublet]

Sample Aggregation Workflows

Sample Aggregation Workflows: perform a “best practices” scRNA-seq analysis on a merged and batch-corrected group of samples. Available batch correction methods include BBKNN, mnnCorrect, and Harmony.

Sample Aggregation Pipelines

	Pipeline / Entrypoint

	Purpose

	Documentation

	bbknn

	Sample aggregation + BBKNN

	[image: BBKNN Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#bbknn-bbknn]

	bbknn_scenic

	BBKNN + SCENIC

	[image: BBKNN SCENIC Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#bbknn-scenic]

	harmony

	Sample aggregation + Harmony

	[image: Harmony Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#harmony-harmony]

	harmony_scenic

	Harmony + SCENIC

	[image: Harmony SCENIC Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#harmony-scenic]

	mnncorrect

	Sample aggregation + mnnCorrect

	[image: MNN-correct Pipeline] [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#mnncorrect-mnncorrect]

In addition, the pySCENIC [https://github.com/aertslab/pySCENIC] implementation of the SCENIC [https://aertslab.org/#scenic] workflow is integrated here and can be run in conjunction with any of the above workflows.
The output of each of the main workflows is a loom [http://loompy.org/]-format file, which is ready for import into the interactive single-cell web visualization tool SCope [http://scope.aertslab.org/].
In addition, data is also output in h5ad format, and reports are generated for the major pipeline steps.

scATAC-seq workflows

Single cell ATAC-seq processing steps are now included in VSN Pipelines.
Currently, a preprocesing workflow is available, which will take fastq inputs, apply barcode correction, read trimming, bwa mapping, and output bam and fragments files for further downstream analysis.
See here [https://vsn-pipelines.readthedocs.io/en/latest/scatac-seq.html] for complete documentation.

Getting Started

Prerequisite

Make sure that LANG and LC_ALL environment variables have been set. You can use the following command to check this:

locale

If some are not set, you can set them to the default language for instance:

export LANG="C"
export LC_ALL="C"

Dependencies

Make sure you have the following software installed,

	Nextflow [https://www.nextflow.io/]

	Currently VSN-Pipelines requires Nextflow version 20.10.0 or higher.

	A container system, either of:

	Docker [https://docs.docker.com/]

	Singularity [https://www.sylabs.io/singularity/]

NOTE: Due to licensing restrictions, to use the cellranger components of VSN you must build and/or provide a container with cellranger and bcl2fastq2 installed yourself.
A sample Dockerfile can be found in ./src/cellranger/, you must download bcl2fastq2 from the Illumina [https://emea.support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html] website, and cellranger from the 10x Genomics [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger] website yourself to build this container.

Quick start

To run a quick test of the single sample analysis pipeline, we can use the 1k PBMC datasets provided by 10x Genomics.
This will take only ~3min to run.

	The data first needs to be downloaded (instructions can be found here [https://github.com/vib-singlecell-nf/vsn-pipelines/tree/master/data]).

	Next, update to the latest pipeline version:

nextflow pull vib-singlecell-nf/vsn-pipelines

	Next, generate a config file using the standard settings for the test data, and the appropriate profiles (e.g., replace singularity with docker if necessary):

nextflow config vib-singlecell-nf/vsn-pipelines \
 -profile tenx,singularity,single_sample > single_sample.config

	The test pipeline can now be run using the config file just generated, specifying the single_sample workflow as an entrypoint:

nextflow -C single_sample.config \
 run vib-singlecell-nf/vsn-pipelines \
 -entry single_sample

Example Output

$ nextflow -C nextflow.config run $VSN -entry single_sample
N E X T F L O W ~ version 20.10.0
Launching `/staging/leuven/stg_00002/lcb/dwmax/documents/aertslab/GitHub/vib-singlecell-nf/vsn-pipelines/main.nf` [silly_pare] - revision: 77be3ba59d
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
executor > local (83)
[44/e02c9e] process > single_sample:SINGLE_SAMPLE:SC__FILE_CONVERTER (1) [100%] 2 of 2 ✔
[22/723593] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:QC_FILTER:SC__SCANPY__COMPUTE_QC_STATS (2) [100%] 2 of 2 ✔
[2e/10d845] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:QC_FILTER:SC__SCANPY__CELL_FILTER (2) [100%] 2 of 2 ✔
[d6/fbe4b6] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:QC_FILTER:SC__SCANPY__GENE_FILTER (2) [100%] 2 of 2 ✔
[22/d4a31b] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:QC_FILTER:GENERATE_DUAL_INPUT_REPORT:SC__SCANPY__GENERATE_DUAL_INPUT_REPORT (2) [100%] 2 of 2 ✔
[20/b43313] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:QC_FILTER:GENERATE_DUAL_INPUT_REPORT:SC__SCANPY__REPORT_TO_HTML (2) [100%] 2 of 2 ✔
[e3/ee3f9c] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:NORMALIZE_TRANSFORM:SC__SCANPY__NORMALIZATION (2) [100%] 2 of 2 ✔
[79/7f4e25] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:NORMALIZE_TRANSFORM:PUBLISH_H5AD_NORMALIZED:COMPRESS_HDF5 (2) [100%] 2 of 2 ✔
[40/370971] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:NORMALIZE_TRANSFORM:PUBLISH_H5AD_NORMALIZED:SC__PUBLISH (2) [100%] 2 of 2 ✔
[f1/aa0726] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:NORMALIZE_TRANSFORM:PUBLISH_H5AD_NORMALIZED:SC__PUBLISH_PROXY (2) [100%] 2 of 2 ✔
[76/e42ef9] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:NORMALIZE_TRANSFORM:SC__SCANPY__DATA_TRANSFORMATION (2) [100%] 2 of 2 ✔
[04/11b8b8] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:SC__SCANPY__FIND_HIGHLY_VARIABLE_GENES (2) [100%] 2 of 2 ✔
[1e/e1d058] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:SC__SCANPY__SUBSET_HIGHLY_VARIABLE_GENES (2) [100%] 2 of 2 ✔
[07/b3580a] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:SC__SCANPY__FEATURE_SCALING (2) [100%] 2 of 2 ✔
[b4/00bf5e] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:PUBLISH_H5AD_HVG_SCALED:COMPRESS_HDF5 (2) [100%] 2 of 2 ✔
[8f/4d5d49] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:PUBLISH_H5AD_HVG_SCALED:SC__PUBLISH (2) [100%] 2 of 2 ✔
[9a/3c5d0d] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:PUBLISH_H5AD_HVG_SCALED:SC__PUBLISH_PROXY (2) [100%] 2 of 2 ✔
[dc/40cda6] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:GENERATE_REPORT:SC__SCANPY__GENERATE_REPORT (2) [100%] 2 of 2 ✔
[62/9dc791] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:HVG_SELECTION:GENERATE_REPORT:SC__SCANPY__REPORT_TO_HTML (2) [100%] 2 of 2 ✔
[8c/ed79b8] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:DIM_REDUCTION_PCA:SC__SCANPY__DIM_REDUCTION__PCA (2) [100%] 2 of 2 ✔
[be/ed9c2e] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:NEIGHBORHOOD_GRAPH:SC__SCANPY__NEIGHBORHOOD_GRAPH (2) [100%] 2 of 2 ✔
[01/ec367e] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:DIM_REDUCTION_TSNE_UMAP:SC__SCANPY__DIM_REDUCTION__TSNE (2) [100%] 2 of 2 ✔
[ea/7fbf7c] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:DIM_REDUCTION_TSNE_UMAP:SC__SCANPY__DIM_REDUCTION__UMAP (2) [100%] 2 of 2 ✔
[e5/a5a70a] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:DIM_REDUCTION_TSNE_UMAP:GENERATE_REPORT:SC__SCANPY__GENERATE_REPORT (2) [100%] 2 of 2 ✔
[dd/b38b9b] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:DIM_REDUCTION_TSNE_UMAP:GENERATE_REPORT:SC__SCANPY__REPORT_TO_HTML (2) [100%] 2 of 2 ✔
[5f/5bcb4d] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:CLUSTER_IDENTIFICATION:SC__SCANPY__CLUSTERING (2) [100%] 2 of 2 ✔
[fa/9765a9] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:CLUSTER_IDENTIFICATION:GENERATE_REPORT:SC__SCANPY__GENERATE_REPORT (2) [100%] 2 of 2 ✔
[aa/7b6adb] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:CLUSTER_IDENTIFICATION:GENERATE_REPORT:SC__SCANPY__REPORT_TO_HTML (2) [100%] 2 of 2 ✔
[0f/82f171] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:CLUSTER_IDENTIFICATION:SC__SCANPY__MARKER_GENES (2) [100%] 2 of 2 ✔
[96/04fc81] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:UTILS__GENERATE_WORKFLOW_CONFIG_REPORT [100%] 1 of 1 ✔
[ee/7fe3fa] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:SC__SCANPY__MERGE_REPORTS (2) [100%] 2 of 2 ✔
[6f/7cbcb5] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:SC__SCANPY__REPORT_TO_HTML (2) [100%] 2 of 2 ✔
[87/7e681b] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:FINALIZE:SC__H5AD_TO_FILTERED_LOOM (2) [100%] 2 of 2 ✔
[f0/176c0c] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:FINALIZE:FILE_CONVERTER_TO_SCOPE:SC__H5AD_TO_LOOM (1) [100%] 2 of 2 ✔
[b3/608cde] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:FINALIZE:FILE_CONVERTER_TO_SCANPY:SC__H5AD_MERGE (2) [100%] 2 of 2 ✔
[d1/43da78] process > single_sample:SINGLE_SAMPLE:SCANPY__SINGLE_SAMPLE:PUBLISH:SC__PUBLISH_PROXY (2) [100%] 2 of 2 ✔
[c3/6209f8] process > single_sample:PUBLISH_SINGLE_SAMPLE_SCOPE:COMPRESS_HDF5 (2) [100%] 2 of 2 ✔
[d5/e1a0c3] process > single_sample:PUBLISH_SINGLE_SAMPLE_SCOPE:SC__PUBLISH (2) [100%] 2 of 2 ✔
[4b/2e236a] process > single_sample:PUBLISH_SINGLE_SAMPLE_SCOPE:SC__PUBLISH_PROXY (2) [100%] 2 of 2 ✔
[87/f3f350] process > single_sample:PUBLISH_SINGLE_SAMPLE_SCANPY:COMPRESS_HDF5 (2) [100%] 2 of 2 ✔
[d4/2c09af] process > single_sample:PUBLISH_SINGLE_SAMPLE_SCANPY:SC__PUBLISH (2) [100%] 2 of 2 ✔
[da/3817b5] process > single_sample:PUBLISH_SINGLE_SAMPLE_SCANPY:SC__PUBLISH_PROXY (2) [100%] 2 of 2 ✔
WARN: To render the execution DAG in the required format it is required to install Graphviz -- See http://www.graphviz.org for more info.
Completed at: 12-Nov-2020 10:55:52
Duration : 2m 36s
CPU hours : 0.6
Succeeded : 83

Output

The pipelines will generate 3 types of results in the output directory (params.global.outdir), by default out/

	data: contains the workflow output file (in h5ad format), plus symlinks to all the intermediate files.

	loom: contains final loom files which can be imported inside SCope visualization tool for further visualization of the results.

	notebooks: contains all the notebooks generated along the pipeline (e.g.: Quality control report)

	pipeline_reports: Nextflow dag, execution, timeline, and trace reports

For a full list of the pipelines available please see the pipelines page.

Further pipeline configuration details

This pipeline can be fully configured and run on custom data with a few steps.
The recommended method is to first run nextflow config ... to generate a complete config file (with the default parameters) in your working directory.
The tool-specific parameters, as well as Docker/Singularity profiles, are included when specifying the appropriate profiles to nextflow config.

	First, update to the latest pipeline version (this will update the Nextflow cache of the repository, typically located in ~/.nextflow/assets/vib-singlecell-nf/):

nextflow pull vib-singlecell-nf/vsn-pipelines

	Next, a config file needs to be generated.
This step will merge parameters from multiple profiles together to create a master config which specifies all parameters used by the pipeline.
In this example, these are tenx for the input data, singularity to use the Singularity system (replace with docker if necessary), and single_sample to load the defaults for the single sample pipeline.
In your working directory, run nextflow config ... with the appropriate profiles:

nextflow config vib-singlecell-nf/vsn-pipelines \
 -profile tenx,singularity,single_sample > single_sample.config

	Now, edits can be made to single_sample.config.
Generally, the default values are acceptable to use for a first pass, but certain variables (input directory, etc.) need to be changed.

In particular, the following parameters are frequently modified in practice:

	params.global.project_name: a project name which will be included in some of the output file names.

	params.data.tenx.cellranger_mex, which should point to the outs/ folder generated by Cell Ranger (if using 10x data). See Information on using 10x Genomics datasets for additional info.

	Filtering parameters (params.sc.scanpy.filter): filtering parameters, which will be applied to all samples, can be set here: min/max genes, mitochondrial read fraction, and min cells. See Multi-sample parameters for additional info on how to specify sample-specific parameters.

	Louvain cluster resolution: params.sc.scanpy.clustering.resolution.

	Cell- and sample- level annotations are also possible.

	Run the workflow using the new config file (using -C is recommended to use only this file), specifying the proper workflow as the entry point:

nextflow -C single_sample.config \
 run vib-singlecell-nf/vsn-pipelines \
 -entry single_sample

Additional resources for running on custom data

	Input file formats available.

	Available pipelines.

	Advanced features for customizing pipelines.

Finally, see the list of case studies with specific examples and full config files at VSN-Pipelines-examples [https://vsn-pipelines-examples.readthedocs.io/en/latest/].

Input Data Formats

Depending on the type of data you run the pipeline with, one or more appropriate profiles should be set when running nextflow config.
These profiles are indicated in the sections below.

Specifying multiple samples

All the input data parameters are compatible with the following features:

	Glob patterns

"data/10x/1k_pbmc/1k_pbmc_*/outs/"

	Comma separated paths (paths can contain glob patterns)

"data/10x/1k_pbmc/1k_pbmc_v2_chemistry/outs/, data/10x/1k_pbmc/1k_pbmc_v3_chemistry/outs/"

	Array of paths (paths can contain glob patterns)

[
 "data/10x/1k_pbmc/1k_pbmc_v2_chemistry/outs/",
 "data/10x/1k_pbmc/1k_pbmc_v3_chemistry/outs/"
]

Cell Ranger (10x Genomics)

Data from a standard Cell Ranger output directory can be easily ingested into the pipeline by using the proper input channel (tenx_mex or tenx_h5, depending on which file should be used).
Multiple samples can be selected by providing the path to this directory using glob patterns.

/home/data/
└── cellranger
 ├── sample_A
 │ └── outs
 │ ├── filtered_feature_bc_matrix
 │ │ ├── barcodes.tsv
 │ │ ├── genes.tsv
 │ │ └── matrix.mtx
 │ └── filtered_feature_bc_matrix.h5
 └── sample_B
 └── outs
 ├── filtered_feature_bc_matrix
 │ ├── barcodes.tsv
 │ ├── genes.tsv
 │ └── matrix.mtx
 └── filtered_feature_bc_matrix.h5

MEX

To use the Cell Ranger Market Exchange (MEX) files, use the following profile when generating the config file:

-profile tenx

This profile adds the following parameter (params.data.tenx.cellranger_mex) into the generated .config file:

[...]
data {
 tenx {
 cellranger_mex = "/home/data/cellranger/sample*/outs/"
 }
}
[...]

H5

To use the Cell Ranger h5 file as input, use the following profile:

-profile tenx_h5

This profile adds the params.data.tenx.cellranger_h5 parameter into the generated .config file:

[...]
data {
 tenx {
 cellranger_h5 = "/home/data/cellranger/sample*/outs/"
 }
}
[...]

Input file detection

Setting the input directory appropriately, using a glob in the directory path in place of the sample names, will collect all the samples listed in the filtered_[feature|gene]_bc_matrix directories listed above.
For example, in params.data.tenx, setting:

cellranger_mex = "/home/data/cellranger/sample*/outs/"

or

cellranger_h5 = "/home/data/cellranger/sample*/outs/"

will recursively find all 10x samples in that directory.

The pipeline will use either the outs/filtered_feature_bc_matrix/ or the outs/raw_feature_bc_matrix/ depending on the setting of the params.sc.file_converter.useFilteredMatrix (true uses filtered; false uses raw).

H5AD (Scanpy)

Use the following profile when generating the config file:

-profile h5ad

In the generated .config file, make sure the file_paths parameter is set with the paths to the .h5ad files:

[...]
data {
 h5ad {
 file_paths = "data/1k_pbmc_v*_chemistry_SUFFIX.SC__FILE_CONVERTER.h5ad"
 suffix = "_SUFFIX.SC__FILE_CONVERTER.h5ad"
 }
}
[...]

	The suffix parameter is used to infer the sample name from the file paths (it is removed from the input file path to derive a sample name).

In case there are multiple .h5ad files that need to be processed with different suffixes, the multi-labelled strategy should be used to define the h5ad parameter:

[...]
data {
 h5ad {
 GROUP1 {
 file_paths = "[path-to-group1-files]/*.SUFFIX1.h5ad"
 suffix = ".SUFFIX1.h5ad"
 group = ["technology", "10x"]
 }
 GROUP2 {
 file_paths = "[path-to-group1-files]/*.SUFFIX2.h5ad"
 suffix = ".SUFFIX2.h5ad"
 group = ["technology", "smart-seq2"]
 }
 }
}
[...]

Notes:

	GROUP1, GROUP2 are just example names here. They can be replaced by any value as long as they are alphanumeric (underscores are allowed).

	All the different suffix defined should unique.

	file_paths and suffix do allow list of paths/globs in the multi-labelled strategy.

	group [optional] should be an array of 2 elements where first element define the group name and the second the group value. This will add cell-based annotation for each group of files

Loom

Use the following profile when generating the config file:

-profile loom

In the generated .config file, make sure the file_paths parameter is set with the paths to the .loom files:

[...]
data {
 loom {
 file_paths = "data/1k_pbmc_v*_chemistry_SUFFIX.SC__FILE_CONVERTER.loom"
 suffix = "_SUFFIX.SC__FILE_CONVERTER.loom"
 }
}
[...]

	The suffix parameter is used to infer the sample name from the file paths (it is removed from the input file path to derive a sample name).

Seurat Rds

Use the following profile when generating the config file:

-profile seurat_rds

In the generated .config file, make sure the file_paths parameter is set with the paths to the .Rds files:

[...]
data {
 seurat_rds {
 file_paths = "data/1k_pbmc_v*_chemistry_SUFFIX.SC__FILE_CONVERTER.Rds"
 suffix = "_SUFFIX.SC__FILE_CONVERTER.Rds"
 }
}
[...]

	The pipelines expect a Seurat v3 object contained in the .Rds file. (Seurat v2 objects are currently not supported).

	The suffix parameter is used to infer the sample name from the file paths (it is removed from the input file path to derive a sample name).

TSV

Use the following profile when generating the config file:

-profile tsv

In the generated .config file, make sure the file_paths parameter is set with the paths to the .tsv files:

[...]
data {
 h5ad {
 file_paths = "data/1k_pbmc_v*_chemistry_SUFFIX.SC__FILE_CONVERTER.tsv"
 suffix = "_SUFFIX.SC__FILE_CONVERTER.tsv"
 }
}
[...]

	The suffix parameter is used to infer the sample name from the file paths (it is removed from the input file path to derive a sample name).

CSV

Use the following profile when generating the config file:

-profile csv

In the generated .config file, make sure the file_paths parameter is set with the paths to the .csv files:

[...]
data {
 h5ad {
 file_paths = "data/1k_pbmc_v*_chemistry_SUFFIX.SC__FILE_CONVERTER.csv"
 suffix = "_SUFFIX.SC__FILE_CONVERTER.csv"
 }
}
[...]

	The suffix parameter is used to infer the sample name from the file paths (it is removed from the input file path to derive a sample name).

Pipelines

Single-sample Pipelines

Pipelines to run on a single sample or multiple samples separately and in parallel.

single_sample [image: single_sample]

The single_sample workflow will process 10x data, taking in 10x-structured data, and metadata file.
The standard analysis steps are run: filtering, normalization, log-transformation, HVG selection, dimensionality reduction, clustering, and loom file generation.
The output is a loom file with the results embedded.

[image: Single-sample Workflow]

single_sample_scenic [image: single_sample_scenic]

Runs the single_sample workflow above, then runs the scenic workflow on the output, generating a comprehensive loom file with the combined results.
This could be very resource intensive, depending on the dataset.

[image: Single-sample SCENIC Workflow]

single_sample_scrublet [image: single_sample_scrublet]

Runs the single_sample workflow above together with the Scrublet workflow.

[image: Single-sample Scrublet Workflow]

The single_sample workflow is running from the input data.
The scrublet workflow is running from the input data.
The final processed file from the single_sample pipeline is annotated with the cell-based data generated by Scrublet.

The pipelines generate the following relevant files for each sample:

Output Files (not exhaustive list)

	Output File

	Description

	out/data/*.SINGLE_SAMPLE_SCRUBLET.loom

	SCope-ready loom file containing resulting loom file from a single_sample workflow but with additional metadata (doublet scores and predicted doublet for the cells) based on Scrublet run.

	out/data/scrublet/*.SC__SCRUBLET__DOUBLET_DETECTION.ScrubletObject.pklz

	Pickled file containing the Scrublet object.

	out/data/scrublet/*.SCRUBLET.SC__ANNOTATE_BY_CELL_METADATA.h5ad

	h5ad file with raw data and doublets annotated.

	out/data/scrublet/*.SINGLE_SAMPLE_SCRUBLET.h5ad

	h5ad file resulting from a single_sample workflow run and with doublets (inferred from Scrublet) removed.

Cuurently there are 3 methods available to call doublets from Scrublet doublet scores:

	(Default) Scrublet will try to automatically identify the doublet score threshold. The threshold is then used to call doublets based on the doublet scores available in the scrublet__doublet_scores column. The doublets called are available in the scrublet__predicted_doublets column.

	It can happen that Scrublet fails to find the automatic treshold. In that case, the pipeline will fail and let you know that either the method define in 3. has to be used or a custom threshold has to be provided. Either way, the pipeline will generate the Scrublet histograms. This is helpful especially if the user decide to select a custom threshold which will need to be reflected in the config as follows:

params {
 sc {
 scublet {
 threshold = [
 "<sample-name>": <custom-threshold>
]
 }
 }
}

	This method is specifc to sample generated by the 10x Genomics single-cell platform. This method is based on the rate of the expected number of doublets in 10x Genomics samples. The number of doublets called (D) will be equal to the rate of doublets (given a number of cells) times the number of cells in that 10x Genomics sample. The cells are then ranked by their Scrublet doublet score (descending order) and the top D cells are called as doublets.

decontx [image: decontx]

Runs the decontx workflow.

[image: DecontX Workflow]

The pipelines generate the following files for each sample:

Output Files

	Output File

	Description

	out/data/*.CELDA_DECONTX_{FILTER,CORRECT}.h5ad

	A h5ad file with either the filtered matrix using one of the provided filters or the corrected (decontaminated) matrix by DecontX.

	out/data/celda/*.CELDA__DECONTX.Rds

	A Rds file containing the SingleCellExperiment object processed by DecontX.

	out/data/celda/*.CELDA__DECONTX.Contamination_Outlier_Table.tsv

	A cell-based .tsv file containing data generated by DecontX and additional outlier masks:

	decontX_contamination

	decontX_clusters

	celda_decontx__{doublemad,scater_isOutlier_3MAD,custom_gt_0.5}_predicted_outliers

	out/data/celda/*.CELDA__DECONTX.Contamination_Outlier_Thresholds.tsv

	A .tsv containing a table with the different threshold for generating the outlier masks.

	out/data/celda/*.CELDA__DECONTX.Contamination_Score_Density_with_{doublemad,scater_isOutlier_3MAD,custom_gt_0.5}.pdf

	A .pdf plot showing the density of the decontamination score from DecontX and the outlier area highlighted for the given outlier threshold.

	out/data/celda/*.CELDA__DECONTX.UMAP_Contamination_Score.pdf

	A .pdf plot showing the DecontX contamination score on top of a UMAP generated from the decontaminated matrix.

	out/data/celda/*.CELDA__DECONTX.UMAP_Clusters.pdf

	A .pdf plot showing a UMAP generated by DecontX and from the decontaminated matrix.

single_sample_decontx [image: single_sample_decontx]

Runs the single_sample workflow above together with the DecontX workflow.

[image: Single-sample DecontX Workflow]

The DecontX workflow is running from the input data.
The final processed file from the single_sample pipeline is annotated with the cell-based data generated by DecontX.

See single_sample and decontx to know more about the files generated by this pipeline.

single_sample_decontx_scrublet [image: single_sample_decontx_scrublet]

Runs the single_sample workflow above together with the DecontX workflow.

[image: Single-sample DecontX Scrublet Workflow]

The single_sample workflow is running from the input data.
The decontx workflow is running from the input data.
The scrublet workflow is running from the output of the DecontX workflow.
The final processed file from the single_sample pipeline is annotated with the cell-based data generated by DecontX and Scrublet.

See single_sample, decontx and scrublet to know more about the files generated by this pipeline.

scenic [image: scenic]

Runs the scenic workflow alone, generating a loom file with only the SCENIC results.
Currently, the required input is a loom file (set by params.sc.scenic.filteredLoom).

[image: SCENIC Workflow]

scenic_multiruns [image: scenic_multiruns] [image: single_sample_scenic_multiruns]

Runs the scenic workflow multiple times (set by params.sc.scenic.numRuns), generating a loom file with the aggregated results from the multiple SCENIC runs.

Note that this is not a complete entry-point itself, but a configuration option for the scenic module.
Simply adding -profile scenic_multiruns during the config step will activate this analysis option for any of the standard entrypoints.

[image: SCENIC Multi-runs Workflow]

cellranger

Runs the cellranger workflow (makefastq, then count).
Input parameters are specified within the config file:

	params.sc.cellranger.mkfastq.csv: path to the CSV samplesheet

	params.sc.cellranger.mkfastq.runFolder: path of Illumina BCL run folder

	params.sc.cellranger.count.transcriptome: path to the Cell Ranger compatible transcriptome reference

cellranger_count_metadata

Given the data stored as:

MKFASTQ_ID_SEQ_RUN1
|-- MAKE_FASTQS_CS
 -- outs
 |-- fastq_path
 |-- HFLC5BBXX
 |-- test_sample1
 | |-- sample1_S1_L001_I1_001.fastq.gz
 | |-- sample1_S1_L001_R1_001.fastq.gz
 | |-- sample1_S1_L001_R2_001.fastq.gz
 | |-- sample1_S1_L002_I1_001.fastq.gz
 | |-- sample1_S1_L002_R1_001.fastq.gz
 | |-- sample1_S1_L002_R2_001.fastq.gz
 | |-- sample1_S1_L003_I1_001.fastq.gz
 | |-- sample1_S1_L003_R1_001.fastq.gz
 | |-- sample1_S1_L003_R2_001.fastq.gz
 |-- test_sample2
 | |-- sample2_S2_L001_I1_001.fastq.gz
 | |-- sample2_S2_L001_R1_001.fastq.gz
 | |-- ...
 |-- Reports
 |-- Stats
 |-- Undetermined_S0_L001_I1_001.fastq.gz
 ...
 -- Undetermined_S0_L003_R2_001.fastq.gz
MKFASTQ_ID_SEQ_RUN2
|-- MAKE_FASTQS_CS
 -- outs
 |-- fastq_path
 |-- HFLY8GGLL
 |-- test_sample1
 | |-- ...
 |-- test_sample2
 | |-- ...
 |-- ...

and a metadata table:

Minimally Required Metadata Table

	sample_name

	fastqs_parent_dir_path

	fastqs_dir_name

	fastqs_sample_prefix

	expect_cells

	Sample1_Bio_Rep1

	MKFASTQ_ID_SEQ_RUN1/outs/fastq_path/HFLY8GGLL

	test_sample1

	sample1

	5000

	Sample1_Bio_Rep1

	MKFASTQ_ID_SEQ_RUN2/outs/fastq_path/HFLC5BBXX

	test_sample1

	sample1

	5000

	Sample1_Bio_Rep2

	MKFASTQ_ID_SEQ_RUN1/outs/fastq_path/HFLY8GGLL

	test_sample2

	sample2

	5000

	Sample1_Bio_Rep2

	MKFASTQ_ID_SEQ_RUN2/outs/fastq_path/HFLC5BBXX

	test_sample2

	sample2

	5000

Optional columns:

	short_uuid: sample_name will be prefix by this value. This should be the same between sequencing runs of the same biological replicate

	expect_cells: This number will be used as argument for the --expect-cells parameter in cellranger count.

	chemistry: This chemistry will be used as argument for the --chemistry parameter in cellranger count.

and a config:

nextflow config \
 ~/vib-singlecell-nf/vsn-pipelines \
 -profile cellranger_count_metadata \
 > nextflow.config

and a workflow run command:

nextflow run \
 ~/vib-singlecell-nf/vsn-pipelines \
 -entry cellranger_count_metadata

The workflow will run Cell Ranger count on 2 samples, each using the 2 sequencing runs.

NOTES:

	If fastqs_dir_name does not exist, set it to none

demuxlet/freemuxlet

Runs the demuxlet or freemuxlet workflows (dsc-pileup [with prefiltering], then freemuxlet or demuxlet)
Input parameters are specified within the config file:

	params.sc.popscle.vcf: path to the VCF file for demultiplexing

	params.sc.popscle.freemuxlet.nSamples: Number of clusters to extract (should match the number of samples pooled)

	params.sc.popscle.demuxlet.field: Field in the VCF with genotype information

nemesh

Runs the nemesh pipeline (Drop-seq) on a single sample or multiple samples separately.

Source [http://mccarrolllab.org/wp-content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf]

Sample Aggregation Pipelines

Pipelines to aggregate multiple datasets together.

bbknn [image: bbknn]

Runs the bbknn workflow (sample-specific filtering, merging of individual samples, normalization, log-transformation, HVG selection, PCA analysis, then the batch-effect correction steps: BBKNN, clustering, dimensionality reduction (UMAP only)).
The output is a loom file with the results embedded.

Source: https://github.com/Teichlab/bbknn/blob/master/examples/pancreas.ipynb

[image: BBKNN Workflow]

Output Files (not exhaustive list)

	Output File

	Description

	out/data/*.BBKNN.h5ad

	Scanpy-ready h5ad file containing all results. The raw.X slot contains the log-normalized data (if normalization & transformation steps applied) while the X slot contains the log-normalized scaled data.

	out/data/*.BBKNN.loom

	SCope-ready loom file containing all results.

bbknn_scenic [image: bbknn_scenic]

Runs the bbknn workflow above, then runs the scenic workflow on the output, generating a comprehensive loom file with the combined results.
This could be very resource intensive, depending on the dataset.

[image: BBKNN SCENIC Workflow]

Output Files (not exhaustive list)

	Output File

	Description

	out/data/*.BBKNN.h5ad

	Scanpy-ready h5ad file containing all results from a bbknn workflow run. The raw.X slot contains the log-normalized data (if normalization & transformation steps applied) while the X slot contains the log-normalized scaled data.

	out/data/*.BBKNN_SCENIC.loom

	SCope-ready loom file containing all results from a bbknn workflow and a scenic workflow run (e.g.: regulon AUC matrix, regulons, …).

harmony [image: harmony]

Runs the harmony workflow (sample-specific filtering, merging of individual samples, normalization, log-transformation, HVG selection, PCA analysis, batch-effect correction (Harmony), clustering, dimensionality reduction (t-SNE and UMAP)).
The output is a loom file with the results embedded.

[image: Harmony Workflow]

Output Files (not exhaustive list)

	Output File

	Description

	out/data/*.HARMONY.h5ad

	Scanpy-ready h5ad file containing all results. The raw.X slot contains the log-normalized data (if normalization & transformation steps applied) while the X slot contains the log-normalized scaled data.

	out/data/*.HARMONY.loom

	SCope-ready loom file containing all results.

harmony_scenic [image: harmony_scenic]

Runs the harmony workflow above, then runs the scenic workflow on the output, generating a comprehensive loom file with the combined results.
This could be very resource intensive, depending on the dataset.

[image: HARMONY SCENIC Workflow]

Output Files (not exhaustive list)

	Output File

	Description

	out/data/*.HARMONY.h5ad

	Scanpy-ready h5ad file containing all results from a harmony workflow run. The raw.X slot contains the log-normalized data (if normalization & transformation steps applied) while the X slot contains the log-normalized scaled data.

	out/data/*.HARMONY_SCENIC.loom

	SCope-ready loom file containing all results from a harmony workflow and a scenic workflow run (e.g.: regulon AUC matrix, regulons, …).

mnncorrect [image: mnncorrect]

Runs the mnncorrect workflow (sample-specific filtering, merging of individual samples, normalization, log-transformation, HVG selection, PCA analysis, batch-effect correction (mnnCorrect), clustering, dimensionality reduction (t-SNE and UMAP)).
The output is a loom file with the results embedded.

[image: mnnCorrect Workflow]

Output Files (not exhaustive list)

	Output File

	Description

	out/data/*.MNNCORRECT.h5ad

	Scanpy-ready h5ad file containing all results. The raw.X slot contains the log-normalized data (if normalization & transformation steps applied) while the X slot contains the log-normalized scaled data.

	out/data/*.MNNCORRECT.loom

	SCope-ready loom file containing all results.

Utility Pipelines

Contrary to the aformentioned pipelines, these are not end-to-end. They are used to perform small incremental processing steps.

cell_annotate

Runs the cell_annotate workflow which will perform a cell-based annotation of the data using a set of provided .tsv metadata files.
We show a use case here below with 10x Genomics data were it will annotate different samples using the obo method. For more information
about this cell-based annotation feature please visit Cell-based metadata annotation [https://vsn-pipelines.readthedocs.io/en/latest/features.html#cell-based-metadata-annotation] section.

First, generate the config :

nextflow config \
 ~/vib-singlecell-nf/vsn-pipelines \
 -profile tenx,utils_cell_annotate,singularity

Make sure the following parts of the generated config are properly set:

[...]
data {
 tenx {
 cellranger_mex = '~/out/counts/*/outs/'
 }
}
sc {
 scanpy {
 container = 'vibsinglecellnf/scanpy:0.5.2'
 }
 cell_annotate {
 off = 'h5ad'
 method = 'obo'
 indexColumnName = 'BARCODE'
 cellMetaDataFilePath = "~/out/data/*.best"
 sampleSuffixWithExtension = '_demuxlet.best'
 annotationColumnNames = ['DROPLET.TYPE', 'NUM.SNPS', 'NUM.READS', 'SNG.BEST.GUESS']
 }
 [...]
}
[...]

Now we can run it with the following command:

nextflow -C nextflow.config \
 run ~/vib-singlecell-nf/vsn-pipelines \
 -entry cell_annotate \
 > nextflow.config

cell_annotate_filter [image: cell_annotate_filter]

Runs the cell_annotate_filter workflow which will perform a cell-based annotation of the data using a set of provided .tsv metadata files following by a cell-based filtering.
We show a use case here below with 10x Genomics data were it will annotate different samples using the obo method. For more information
about this cell-based annotation feature please visit Cell-based metadata annotation [https://vsn-pipelines.readthedocs.io/en/latest/features.html#cell-based-metadata-annotation] section and Cell-based metadata filtering [https://vsn-pipelines.readthedocs.io/en/latest/features.html#cell-based-metadata-filtering] section.

First, generate the config :

nextflow config \
 ~/vib-singlecell-nf/vsn-pipelines \
 -profile tenx,utils_cell_annotate,utils_cell_filter,singularity \
 > nextflow.config

Make sure the following parts of the generated config are properly set:

[...]
data {
 tenx {
 cellranger_mex = '~/out/counts/*/outs/'
 }
}
sc {
 scanpy {
 container = 'vibsinglecellnf/scanpy:0.5.2'
 }
 cell_annotate {
 off = 'h5ad'
 method = 'obo'
 indexColumnName = 'BARCODE'
 cellMetaDataFilePath = "~/out/data/*.best"
 sampleSuffixWithExtension = '_demuxlet.best'
 annotationColumnNames = ['DROPLET.TYPE', 'NUM.SNPS', 'NUM.READS', 'SNG.BEST.GUESS']
 }
 cell_filter {
 off = 'h5ad'
 method = 'internal'
 filters = [
 [
 id:'NO_DOUBLETS',
 sampleColumnName:'sample_id',
 filterColumnName:'DROPLET.TYPE',
 valuesToKeepFromFilterColumn: ['SNG']
]
]
 }
 [...]
}
[...]

Now we can run it with the following command:

nextflow -C nextflow.config \
 run ~/vib-singlecell-nf/vsn-pipelines \
 -entry cell_filter

sra [image: sra]

Runs the sra workflow which will download all (or user-defined selected) FASTQ files from a particular SRA project ID and format with properly and humand friendly names.

First, generate the config :

nextflow config \
 ~/vib-singlecell-nf/vsn-pipelines \
 -profile sra,singularity \
 > nextflow.config

NOTE: If you’re a VSC user, you might want to add the vsc profile.

Now we can run it with the following command:

nextflow -C nextflow.config \
 run ~/vib-singlecell-nf/vsn-pipelines \
 -entry cell_filter

$ nextflow -C nextflow.config run ~/vib-singlecell-nf/vsn-pipelines -entry sra
N E X T F L O W ~ version 20.11.0-edge
Launching `~/vib-singlecell-nf/vsn-pipelines/main.nf` [cranky_kare] - revision: c5e34d476a
executor > local (1)
[c3/4bf7a2] process > sra:DOWNLOAD_FROM_SRA:SRA_TO_METADATA (1) [100%] 1 of 1 _
[-] process > sra:DOWNLOAD_FROM_SRA:DOWNLOAD_FASTQS_FROM_SRA_ACC_ID -
[-] process > sra:DOWNLOAD_FROM_SRA:NORMALIZE_SRA_FASTQS -
[SRR11442507, scATAC_Control_Superior_and_Middle_Temporal_Gyri_1]
[SRR11442506, scATAC_Control_Substantia_Nigra_2]
...

Advanced Features

Two-pass strategy

Typically, cell- and gene-level filtering is one of the first steps performed in the analysis pipelines.
This usually results in the pipeline being run in two passes.
In the first pass, the default filters are applied (which are probably not valid for new datasets), and a separate QC report is generated for each sample.
These QC reports can be inspected and the filters can be adjusted in the config file
either for all samples (by editing the params.sc.scanpy.filter settings directly, or for individual samples by using the strategy described in multi-sample parameters.
Then, the second pass restarts the pipeline with the correct filtering parameters applied (use nextflow run ... -resume to skip already completed steps).

Other notes

In order to run a specific pipeline (e.g. single_sample),
the pipeline name must be specified as a profile when running nextflow config ... (so that the default parameters are included),
and as the entry workflow when running the pipeline with nextflow run.

One exception to this is that the -entry pipeline can be one that is a subset of the one present in the config file.
For example, in a pipeline with long running step that occurs after filtering (e.g. single_sample_scenic),
it can be useful to generate the full config file (nextflow config vib-singlecell-nf/vsn-pipelines -profile single_sample_scenic),
then run a first pass for filtering using nextflow run vib-singlecell-nf/vsn-pipelines -entry single_sample, and a second pass using the full pipeline -entry single_sample_scenic).

Avoid re-running SCENIC and use pre-existing results

Often one would like to test different batch effect correction methods with SCENIC. Naively, one would run the following commands:

nextflow config ~/vibsinglecellnf -profile tenx,bbknn,dm6,scenic,scenic_use_cistarget_motifs,singularity > bbknn.config
nextflow -C bbknn.config run vib-singlecell-nf/vsn-pipelines -entry bbknn_scenic

and,

nextflow config ~/vibsinglecellnf -profile tenx,bbknn,dm6,scenic,scenic_use_cistarget_motifs,singularity > bbknn.config
nextflow -C harmony.config run vib-singlecell-nf/vsn-pipelines -entry harmony_scenic

The annoying bit here is that we run SCENIC twice. This is what we would like to avoid since the SCENIC results will be the same.
To avoid this one can run the following code for generating the harmony_scenic.config,

nextflow config ~/vibsinglecellnf -profile tenx,harmony,scenic_append_only,singularity > harmony.config

This will add a different scenic entry in the config:

params {
 sc {
 scenic {
 container = 'vibsinglecellnf/scenic:0.9.19'
 report_ipynb = '/src/scenic/bin/reports/scenic_report.ipynb'
 existingScenicLoom = ''
 sampleSuffixWithExtension = '' // Suffix after the sample name in the file path
 scenicoutdir = "${params.global.outdir}/scenic/"
 scenicScopeOutputLoom = 'SCENIC_SCope_output.loom'
 }
 }
}

Make sure that the following entries are correctly set before running the pipeline,

	existingScenicLoom = ''

	sampleSuffixWithExtension = '' // Suffix after the sample name in the file path

Finally run the pipeline,

nextflow -C harmony.config run vib-singlecell-nf/vsn-pipelines -entry harmony_scenic

Set the seed

Some steps in the pipelines are non-deterministic. In order to have reproducible results, a seed is set by default to:

workflow.manifest.version.replaceAll("\\.","").toInteger()

The seed is a number derived from the version of the pipeline used at the time of the analysis run.
To override the seed (integer) you have edit the nextflow.config file with:

params {
 global {
 seed = [your-custom-seed]
 }
}

This filter will only be applied on the final loom file of the VSN-Pipelines. All the intermediate files prior to the loom file will still contain all of them the markers.

Change log fold change (logFC) and false discovery rate (FDR) thresholds for the marker genes stored in the final SCope loom

By default, the logFC and FDR thresholds are set to 0 and 0.05 respectively.
If you want to change those thresholds applied on the markers genes, edit the nextflow.config with the following entries,

params {
 sc {
 scope {
 markers {
 log_fc_threshold = 0.5
 fdr_fc_threshold = 0.01
 }
 }
 }
}

This filter will only be applied on the final loom file of the VSN-Pipelines. All the intermediate files prior to the loom file will still contain all of them the markers.

Automated selection of the optimal number of principal components

When generating the config using nextflow config (see above), add the pcacv profile.

Remarks:

	Make sure nComps config parameter (under dim_reduction > pca) is not set.

	If nPcs is not set for t-SNE or UMAP config entries, then all the PCs from the PCA will be used in the computation.

Currently, only the Scanpy related pipelines have this feature implemented.

Cell-based metadata annotation

There are 2 ways of using this feature: either when running an end-to-end pipeline (e.g.: single_sample, harmony, bbknn, …) or on its own as a independent workflow.

The profile utils_cell_annotate should be added along with the other profiles when generating the main config using the nextflow config command.

For more detailed information about those parameters, please check the `cell_annotate parameter details <Parameters of cell_annotate_>`_ section below.

Please check the cell_annotate [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#nemesh] workflow.

The utils_cell_annotate profile is adding the following part to the config:

params {
 sc {
 cell_annotate {
 off = 'h5ad'
 method = ''
 cellMetaDataFilePath = ''
 sampleSuffixWithExtension = ''
 indexColumnName = ''
 sampleColumnName = ''
 annotationColumnNames = ['']
 }
 }
}

Two methods (params.sc.cell_annotate.method) are available:

	aio

	obo

If you have a single file containing the metadata information of all your samples, use aio method otherwise use obo.

For both methods, here are the mandatory parameters to set:

	off should be set to h5ad

	method choose either obo or aio

	annotationColumnNames is an array of columns names from cellMetaDataFilePath containing different annotation metadata to add.

If aio used, the following additional parameters are required:

	cellMetaDataFilePath is a file path pointing to a single .tsv file (with header) with at least 2 columns: a column containing all the cell IDs and an annotation column.

	indexColumnName is the column name from cellMetaDataFilePath containing the cell IDs information. This column can have unique values; if it’s not the case, it’s important that the combination of the values from the indexColumnName and the sampleColumnName are unique.

	sampleColumnName is the column name from cellMetaDataFilePath containing the sample ID/name information. Make sure that the values from this column match the samples IDs inferred from the data files. To know how those are inferred, please read the Input Data Formats [https://vsn-pipelines.readthedocs.io/en/develop/pipelines.html#input-data-formats] section.

If obo is used, the following parameters are required:

	cellMetaDataFilePath

	In multi-sample mode, is a file path containing a glob pattern. The target file paths should each pointing to a .tsv file (with header) with at least 2 columns: a column containing all the cell IDs and an annotation column.

	In single-sample mode, is a file path pointing to a single .tsv file (with header) with at least 2 columns: a column containing all the cell IDs and an annotation column.

	Note: the file name(s) of cellMetaDataFilePath is/are required to contain the sample ID(s).

	sampleSuffixWithExtension is the suffix used to extract the sample ID from the file name(s) of cellMetaDataFilePath. The suffix should be the part after the sample name in the file path.

	indexColumnName is the column name from cellMetaDataFilePath containing the cell IDs information. This column must have unique values.

Sample-based metadata annotation

The profile utils_sample_annotate should be added when generating the main config using nextflow config. This will add the following entry in the config:

params {
 sc {
 sample_annotate {
 iff = '10x_cellranger_mex'
 off = 'h5ad'
 type = 'sample'
 metadataFilePath = 'data/10x/1k_pbmc/metadata.tsv'
 }
 }
}

Then, the following parameters should be updated to use the module feature:

	metadataFilePath is a .tsv file (with header) with at least 2 columns where the first column need to match the sample IDs. Any other columns will be added as annotation in the final loom i.e.: all the cells related to their sample will get annotated with their given annotations.

Sample-based Metadata Table

	id

	chemistry

	…

	1k_pbmc_v2_chemistry

	v2

	…

	1k_pbmc_v3_chemistry

	v3

	…

Sample-annotating the samples using this system will allow any user to query all the annotation using the SCope portal. This is especially relevant when samples needs to be compared across specific annotations (check compare tab with SCope).

Cell-based metadata filtering

There are 2 ways of using this feature: either when running an end-to-end pipeline (e.g.: single_sample, harmony, bbknn, …) or on its own as a independent workflow.

The utils_cell_filter profile is required when generating the config file. This profile will add the following part:

params {
 sc {
 cell_filter {
 off = 'h5ad'
 method = ''
 filters = [
 [
 id: '',
 sampleColumnName: '',
 filterColumnName: '',
 valuesToKeepFromFilterColumn: ['']
]
]
 }
 }
}

For more detailed information about the parameters to set in params.sc.cell_filter, please check the cell_filter parameter details section below.

Please check the cell_filter [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#cell_filter] workflow or cell_annotate_filter [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#cell_annotate_filter] workflow to perform cell-based annotation and cell-based filtering sequentially.

Two methods (params.sc.cell_filter.method) are available:

	internal

	external

If you have a single file containing the metadata information of all your samples, use external method otherwise use internal.

For both methods, here are the mandatory parameters to set:

	off should be set to h5ad

	method choose either internal or external

	filters is a List of Maps where each Map is required to have the following parameters:

	id is a short identifier for the filter

	valuesToKeepFromFilterColumn is array of values from the filterColumnName that should be kept (other values will be filtered out).

If internal used, the following additional parameters are required:

	filters is a List of Maps where each Map is required to have the following parameters:

	sampleColumnName is the column name containing the sample ID/name information. It should exist in the obs column attribute of the h5ad.

	filterColumnName is the column name that will be used to filter out cells. It should exist in the obs column attribute of the h5ad.

If external used, the following additional parameters are required:

	filters is a List of Maps where each Map is required to have the following parameters:

	cellMetaDataFilePath is a file path pointing to a single .tsv file (with header) with at least 3 columns: a column containing all the cell IDs, another containing the sample ID/name information, and a column to use for the filtering.

	indexColumnName is the column name from cellMetaDataFilePath containing the cell IDs information. This column must have unique values.

	optional sampleColumnName is the column name from cellMetaDataFilePath containing the sample ID/name information. Make sure that the values from this column match the samples IDs inferred from the data files. To know how those are inferred, please read the Input Data Formats [https://vsn-pipelines.readthedocs.io/en/develop/pipelines.html#input-data-formats] section.

	optional filterColumnName is the column name from cellMetaDataFilePath which be used to filter out cells.

Multi-sample parameters

It’s possible to define custom parameters for the different samples. It’s as easy as defining a hashmap in groovy or a dictionary-like structure in Python.
You’ll just have to repeat the following structure for the parameters which you want to enable the multi-sample feature for

params {
 sc {
 scanpy {
 container = 'vibsinglecellnf/scanpy:0.5.2'
 filter {
 report_ipynb = '/src/scanpy/bin/reports/sc_filter_qc_report.ipynb'
 // Here we enable the multi-sample feature for the cellFilterMinNgenes parameter
 cellFilterMinNGenes = [
 '1k_pbmc_v2_chemistry': 600,
 '1k_pbmc_v3_chemistry': 800
]
 // cellFilterMaxNGenes will be set to 4000 for all the samples
 cellFilterMaxNGenes = 4000
 // Here we again enable the multi-sample feature for the cellFilterMaxPercentMito parameter
 cellFilterMaxPercentMito = [
 '1k_pbmc_v2_chemistry': 0.15,
 '1k_pbmc_v3_chemistry': 0.05
]
 // geneFilterMinNCells will be set to 3 for all the samples
 geneFilterMinNCells = 3
 iff = '10x_mtx'
 off = 'h5ad'
 outdir = 'out'
 }
 }
}

If you want to apply custom parameters for some specific samples and have a “general” parameter for the rest of the samples, you should use the ‘default’ key as follows:

params {
 sc {
 scanpy {
 container = 'vibsinglecellnf/scanpy:0.5.2'
 filter {
 report_ipynb = '/src/scanpy/bin/reports/sc_filter_qc_report.ipynb'
 // Here we enable the multi-sample feature for the cellFilterMinNgenes parameter
 cellFilterMinNGenes = [
 '1k_pbmc_v2_chemistry': 600,
 'default': 800
]
 [...]
 }
 }
}

Using this config, the parameter params.sc.scanpy.cellFilterMinNGenes will be applied with a threshold value of 600 to 1k_pbmc_v2_chemistry. The rest of the samples will use the value 800 to filter the cells having less than that number of genes.
This strategy can be applied to any other parameter of the config.

Parameter exploration

Since v0.9.0, it is possible to explore several combinations of parameters. The latest version of the VSN-Pipelines allows to explore the following parameters:

	params.sc.scanpy.clustering

	method

methods = ['louvain','leiden']

	resolution

resolutions = [0.4, 0.8]

In case the parameter exploration mode is used within the params.sc.scanpy.clustering parameter, it will generated a range of different clusterings.
For non-expert, it’s often difficult to know which clustering to pick. It’s however possible to use the DIRECTS module in order to select a default clustering. In order, to use
this automated clustering selection method, add the directs profile when generating the main config using nextflow config. The config will get populated with:

directs {
 container = 'vibsinglecellnf/directs:0.1.0'
 labels {
 processExecutor = 'local'
 }
 select_default_clustering {
 fromMinClusterSize = 5
 toMinClusterSize = 100
 byMinClusterSize = 5
 }
}

Currently, only the Scanpy related pipelines have this feature implemented.

Regress out variables

By default, don’t regress any variable out. To enable this features, the scanpy_regress_out profile should be added when generating the main config using nextflow config. This will add the following entry in the config:

params {
 sc {
 scanpy {
 regress_out {
 variablesToRegressOut = []
 off = 'h5ad'
 }
 }
 }
}

Add any variable in variablesToRegressOut to regress out: e.g.: ‘n_counts’, ‘percent_mito’.

Skip steps

By default, the pipelines are run from raw data (unfiltered data, not normalized).

If you have already performed an independent steps with another it’s possible to skip some steps from the pipelines. Currently, here are the steps that can be skipped:
- Scanpy filtering
- Scanpy normalization

In order to skip the Scanpy filtering step, we need to add 3 new profiles when generating the config:

	min

	scanpy_data_transformation

	scanpy_normalization

The following command, will create a Nextflow config which the pipeline will understand and will not run the Scanpy filtering step:

nextflow config \
 ~/vib-singlecell-nf/vsn-pipelines \
 -profile min,[data-profile],scanpy_data_transformation,scanpy_normalization,[...],singularity > nextflow.config

	[data-profile]: Can be one of the different possible data profiles e.g.: h5ad

	[...]: Can be other profiles like bbknn, harmony, pcacv, …

Quiet mode

By default, VSN will output some additional messages to the terminal, such as the global seed, and the names and paths of the samples detected by the input channel.
These messages can be suppressed by using the --quiet flag when starting the nextflow process:

nextflow -C example.config run vib-singlecell-nf/vsn-pipelines -entry single_sample --quiet

Case Studies

See the full list of case studies and examples at VSN-Pipelines-examples [https://vsn-pipelines-examples.readthedocs.io/en/latest/].

scATAC-seq Preprocessing

This pipeline takes fastq files from paired end single cell ATAC-seq, and applies preprocessing steps to align the reads to a reference genome, and produce a bam file and scATAC-seq fragments file.

This workflow is currently available in the develop_atac branch (use nextflow pull vib-singlecell-nf/vsn-pipelines -r develop_atac to sync this branch).

Pipeline Steps

The full steps are:

	Barcode correction:

	For ‘standard’ and ‘multiome’ samples (e.g. 10x Genomics or similar) correction is performed against a whitelist by
this method [https://github.com/aertslab/single_cell_toolkit/blob/master/correct_barcode_in_fastq.sh]
from aertslab/single_cell_toolkit [https://github.com/aertslab/single_cell_toolkit].

	For ‘biorad’ samples, barcode correction is performed by
this script [https://github.com/aertslab/single_cell_toolkit/blob/master/extract_and_correct_biorad_barcode_in_fastq.sh]
in our aertslab/single_cell_toolkit [https://github.com/aertslab/single_cell_toolkit]
(previously, this was done with BAP [https://github.com/caleblareau/bap]).

	Fastq barcoding: Add the barcode sequence to the comment field of the fastq sequence identifier.
Uses methods from aertslab/single_cell_toolkit [https://github.com/aertslab/single_cell_toolkit].

	Read/adapter trimming
(Trim_Galore [https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/]
or fastp [https://github.com/OpenGene/fastp]).

	Mapping to a reference genome:

	bwa mem is used with default parameters, with a choice of the original
bwa mem [https://github.com/lh3/bwa], or bwa-mem2 [https://github.com/bwa-mem2/bwa-mem2].

	Mark PCR and optical duplicates (MarkDuplicates (Picard) [https://gatk.broadinstitute.org/hc/en-us/articles/360057439771-MarkDuplicates-Picard-]
or MarkDuplicatesSpark (GATK) [https://gatk.broadinstitute.org/hc/en-us/articles/360057438771-MarkDuplicatesSpark]).

	Estimate library complexity with
EstimateLibraryComplexity (Picard) [https://gatk.broadinstitute.org/hc/en-us/articles/360057438451-EstimateLibraryComplexity-Picard-].

	A fragments file is created using Sinto [https://github.com/timoast/sinto].

Pipeline Details

Input Metadata

The input to this pipeline is a (tab-delimited) metadata table with the sample ID, sequencing technology, and locations of the fastq files.
Note that the fastq file fields must be full paths; this is not shown here for clarity:

Metadata Table

	sample_name

	technology

	fastq_PE1_path

	fastq_barcode_path

	fastq_PE2_path

	sample_1

	standard

	sample_1_R1.fastq.gz

	sample_1_R2.fastq.gz

	sample_1_R3.fastq.gz

	sample_2

	multiome

	sample_2_R1.fastq.gz

	sample_2_R2.fastq.gz

	sample_2_R3.fastq.gz

	sample_3

	biorad

	sample_3_R1.fastq.gz

	
	sample_3_R3.fastq.gz

	sample_4

	revcomp_wl

	sample_4_R1.fastq.gz

	sample_2_R2.fastq.gz

	sample_4_R3.fastq.gz

	sample_5

	hydrop_3x96

	sample_5_R1.fastq.gz

	sample_5_R2.fastq.gz

	sample_5_R3.fastq.gz

	sample_6

	hydrop_2x384

	sample_5_R1.fastq.gz

	sample_5_R2.fastq.gz

	sample_5_R3.fastq.gz

The columns represent:

	sample_name Sample name for labeling the sample in the pipeline and output files. This can be any arbitrary string.

	technology: This controls the barcode correction and processing methods to use for the fastq files. Currently only the biorad option involves different processing steps. Otherwise, the value in this field (e.g. standard, multiome) controls which barcode whitelist is used for correction. See below for additional details.

	fastq_PE1_path: The full path to the fastq file for the first read in a pair.

	fastq_barcode_path: The full path to the fastq file containing the barcodes. This column can be blank/empty depending on the technology setting (e.g. biorad).

	fastq_PE2_path: The full path to the fastq file for the second read in a pair.

Fastq input

Fastq input for each sample can be given as a single set of files (R1, R2, R3), or it can be multiple files, in the case of samples which have been split across multiple sequencing lanes.
A combination of these cases can be processed together in one metadata file.

Within the pipeline, all of the reads from each set of files will be considered and labeled as one read group.
Read group names are taken from the first read in the fastq:

@A01044:19:HLYKFDRXX:1:2101:4291:1000 1:N:0:ACTCAGAC

will produce a RG in the bam:

@RG ID:A01044:19:HLYKFDRXX:1 SM:sample_1 LB:A01044:19:HLYKFDRXX:1__sample_1 PL:ILLUMINA

Single fastq input

In this situation, there is only one set of reads per sample, the metadata file will look very similar to one of the rows from above.
There will be one read group in the final bam file.

Split fastq input

In this case, multiple fastq files (in rows) for each sample can be given.
In this example, there are two sets of fastqs for sample_1 that were run on two separate lanes.
Note that the sample ID is the same for both rows:

Metadata Table with split fastqs

	sample_name

	technology

	fastq_PE1_path

	fastq_barcode_path

	fastq_PE2_path

	sample_1

	standard

	sample_1_S1_L001_R1_001.fastq.gz

	sample_1_S1_L001_R2_001.fastq.gz

	sample_1_S1_L001_R3_001.fastq.gz

	sample_1

	standard

	sample_1_S1_L002_R1_001.fastq.gz

	sample_1_S1_L002_R2_001.fastq.gz

	sample_1_S1_L002_R3_001.fastq.gz

In this situation, each set of fastqs will be processed separately for the barcode correction, barcode addition to the fastq comment field, adaptor trimming, and mapping steps.
Following mapping, each mapped bam is merged and duplicates are marked using the full data.
Downstream steps are done with the merged data.

Generating the metadata file

Note that there is an easy way to create the metadata from the file paths for each sample by using the following bash command (expand to view).
Special thanks here to Gert Hulselmans for expanding the capabilities of this function.

metadata generatorcreate_atac_metadata () {
 local sample="${1}";
 local technology="${2}";
 local fastq_prefix="${3}";
 local read_labels="${4}";
 if ["${sample}" == "header"]; then
 printf 'sample_name\ttechnology\tfastq_PE1_path\tfastq_barcode_path\tfastq_PE2_path\n';
 return 0;
 fi
 if [${#@} -ne 4] ; then
 printf 'Usage: create_atac_metadata sample technology fastq_prefix read_labels\n\n';
 printf 'Arguments:\n';
 printf ' sample: sample name\n';
 printf ' technology: "standard", "hydrop_3x96", "hydrop_2x384", or "biorad"\n';
 printf ' fastq_prefix: path prefix to FASTQ files.\n';
 printf ' read_labels: comma separated read labels for R1, R2 and R3 that select: R1,R2,R3.\n';
 return 1;
 fi
 read_labels_arr=(${read_labels//,/ });
 # Get R1, R2 and R3 FASTQ filenames for
 R1=(${fastq_prefix}*${read_labels_arr[0]}*.{fastq,fq,fastq.gz,fq.gz})
 R2=(${fastq_prefix}*${read_labels_arr[1]}*.{fastq,fq,fastq.gz,fq.gz})
 R3=(${fastq_prefix}*${read_labels_arr[2]}*.{fastq,fq,fastq.gz,fq.gz})
 for i in "${!R1[@]}" ; do
 # Check if R1 FASTQ file exist (and is not just a glob like "${sample}*R1*.fq").
 if [-e "${R1[i]}"] ; then
 printf "${sample}\t${technology}\t${R1[i]}\t${R2[i]}\t${R3[i]}\n";
 fi
 done
}

To run use the options:

	Sample ID (if this parameter is “header”, it will print the metadata header and stop)

	Technology (e.g. “standard”)

	The “file prefix” full path to your fastq files, matching the common portions of the file names (without any glob * expansions)

	The “read labels” to indicate how the files are named and match the remainder of the file names (e.g. “R1,R2,R3”, “R1,UMI,R2”, etc.)

create_atac_metadata header > auto_metadata.tsv
create_atac_metadata sample_1 standard /path/to/sample_1_subset_S R1,R2,R3 >> auto_metadata.tsv
create_atac_metadata sample_2 standard /path/to/sample_2_subset_S R1,R2,R3 >> auto_metadata.tsv
create_atac_metadata sample_5 hydrop_3x96 /path/to/sample_5_ R1,R2,R3 >> auto_metadata.tsv
create_atac_metadata sample_6 hydrop_2x384 /path/to/sample_6_ R1,R2,R3 >> auto_metadata.tsv

Technology types

The “technology” field in the metadata table controls two things:

	How technology-specific pipeline steps are applied.
Currently there are three specific settings (biorad, hydrop_3x96, and hydrop_2x384) that use alternate pipelines processes (to extract and correct the barcode sequence from the input fastqs).
Using any other keyword is allowed, and samples will be run with the standard pipeline steps (barcode correction against a whitelist).

	Which whitelist is used for barcode correction.
The “technology” field must match a key in the params.tools.singlecelltoolkit.barcode_correction.whitelist parameter list in the config file for that sample to be associated with a particular barcode whitelist.
The “technology” field and whitelist key name can be set to any arbitrary string (e.g. standard), with the exception of the technology-specific keywords above.

The main modes are:

standard

The standard setting is the main pipeline mode.
It assumes a typical 10x Genomics style format with two read pair fastqs and a barcode fastq (note that in the example here, the barcode correction has already been performed, writing the CB tag into the comment of the barcode fastq):

$ zcat sample_1_R1.fastq.gz | head -n 4
@A00311:74:HMLK5DMXX:1:1101:2013:1000 1:N:0:ACTCAGAC
NTTGTCTCAGCACCCCCCGACATGGATTCAGGCTGTCTCTTATACACATC
+
#FFF

$ zcat sample_1_R2.fastq.gz | head -n 4
@A00311:74:HMLK5DMXX:1:1101:2013:1000 2:N:0:ACTCAGAC CB:Z:CTGTTCGCAAAGCATA
CTGTTCGCAAAGCATA
+
F:FFFFFFFFFFFFFF

$ zcat sample_1_R3.fastq.gz | head -n 4
@A00311:74:HMLK5DMXX:1:1101:2013:1000 3:N:0:ACTCAGAC
CCTGAATCCATGTCGGGGGGTGCTGAGACAAGCTGTCTCTTATACACAT
+
FFF

The barcoding step here uses a
helper script [https://github.com/aertslab/single_cell_toolkit/blob/master/barcode_10x_scatac_fastqs.sh]
from aertslab/single_cell_toolkit [https://github.com/aertslab/single_cell_toolkit]
which transforms this input into two paired fastq files with the barcode information embedded in the fastq comments field:

$ zcat sample_1_dex_R1.fastq.gz | head -n 4
@A00311:74:HMLK5DMXX:1:1101:2013:1000 CR:Z:CTGTTCGCAAAGCATA CY:Z:F:FFFFFFFFFFFFFF CB:Z:CTGTTCGCAAAGCATA
NTTGTCTCAGCACCCCCCGACATGGATTCAGGCTGTCTCTTATACACATC
+
#FFF

$ zcat sample_1_dex_R2.fastq.gz | head -n 4
@A00311:74:HMLK5DMXX:1:1101:2013:1000 CR:Z:CTGTTCGCAAAGCATA CY:Z:F:FFFFFFFFFFFFFF CB:Z:CTGTTCGCAAAGCATA
CCTGAATCCATGTCGGGGGGTGCTGAGACAAGCTGTCTCTTATACACAT
+
FFF

multiome/alternate

The multiome or alternately-named settings work with the same pipeline steps as standard with the exception of the whitelist used for barcode correction.
The whitelists are supplied in the params file (params.tools.singlecelltoolkit.barcode_correction.whitelist).
This can be used to supply alternate whitelists for certain samples, for example if you need to supply a reverse complemented whitelist for samples run in certain sequencing machines.

hydrop_3x96/hydrop_2x384

The HyDrop settings (either hydrop_3x96 or hydrop_2x384 depending on the library preparation used) processes data generated by the HyDrop ATAC protocol
(see hydrop.aertslab.org [https://hydrop.aertslab.org/] and the associated preprint [https://doi.org/10.1101/2021.06.04.447104]).
This approach differs from the standard pipeline in only the initial step, which is to extract and process the HyDrop barcodes from the sequencing output.
Here, this script [https://github.com/aertslab/single_cell_toolkit/blob/master/extract_hydrop_atac_barcode_from_R2_fastq.sh] is used to take the R2 read from the sequencer:

$ zcat sample_5_R2.fastq.gz | head -n 4
@VH00445:5:AAAL5KYM5:1:1101:63923:1019 2:N:0:ACACGTGGAC
CACTGGTGGTAGGGTACTCGGACAAGTGGAGCAGTAGCTGAAGTGTAGAAG
+
CCC

and transform it into:

$ zcat sample_5_hydrop_barcode_R2.fastq.gz
@VH00445:5:AAAL5KYM5:1:1101:63923:1019 2:N:0:ACACGTGGAC
CACTGGTGGTGACAAGTGGAAAGTGTAGAA
+
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

The two HyDrop modes (hydrop_3x96, hydrop_2x384) differ only in the way the initial barcode extraction script works.
Following this, they are processed in the same way as the standard pipeline, including whitelist-based barcode correction (note that the two HyDrop modes require different barcode whitelists to be used here).

biorad

The biorad setting processes BioRad data using
this script [https://github.com/aertslab/single_cell_toolkit/blob/master/extract_and_correct_biorad_barcode_in_fastq.sh]
in our aertslab/single_cell_toolkit [https://github.com/aertslab/single_cell_toolkit]
(previously, this was done with BAP [https://github.com/caleblareau/bap]).
This takes input data:

$ zcat sample_2_R1.fastq.gz | head -n 4
@A00794:327:HTJ55DRXX:1:2101:1154:1016 1:N:0:TAAGGCGA
GATCACCATATGCATGACATTCACGAGTCACTGAGTAACGCCTCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCAATGGCTGGAGCACACCCCATACTCATTCTGGTCTCCTT
+
FFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFF:FFFFFFFFF:FFFFFFFFFFFFFFFFF,FF,FFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFF:F:FFFF,FFFFFF

$ zcat sample_2_R2.fastq.gz | head -n 4
@A00794:327:HTJ55DRXX:1:2101:1154:1016 2:N:0:TAAGGCGA
GTGTTTGGCTGAGGAAAGTGTGTGAAGCCCCGATATGTGA
+
FFF,FFF:FFF:FF,FFFFF:F:FFFFFFFFFFF,,F:FF

and directly produces paired fastq files with the barcode added in the fastq comments field:

$ zcat sample_2_dex_R1.fastq.gz | head -n 4
@A00794:327:HTJ55DRXX:1:2101:1154:1016 CR:Z:GATCACCATTCACGTAACGCC CY:Z:FFFFFFFFFFFFFF:FFFFFF CB:Z:GATCACCATTCACGTAACGCC br:Z:0,0,0_0,0,0,1
CTGCAATGGCTGGAGCACACCCCATACTCATTCTGGTCTCCTT
+
F:FFFFFFFFFFFFFFFFFFFFFFFFFFF:F:FFFF,FFFFFF

$ zcat sample_2_dex_R2.fastq.gz | head -n 4
@A00794:327:HTJ55DRXX:1:2101:1154:1016 CR:Z:GATCACCATTCACGTAACGCC CY:Z:FFFFFFFFFFFFFF:FFFFFF CB:Z:GATCACCATTCACGTAACGCC br:Z:0,0,0_0,0,0,1
GTGTTTGGCTGAGGAAAGTGTGTGAAGCCCCGATATGTGA
+
FFF,FFF:FFF:FF,FFFFF:F:FFFFFFFFFFF,,F:FF

Running the workflow

Technical considerations

	Direct the Nextflow work directory to an alternate path (e.g. a scratch drive) using the NXF_WORK environmental variable:

nwork=/path/to/scratch/example_project
mkdir $nwork
export NXF_WORK=$nwork

Note that if you start a new shell, NXF_WORK must be set again, or the pipeline will not resume properly.

	Temporary directory mapping.
For large BAM files, the system default temp location may become full.
A workaround is to include a volume mapping to the alternate /tmp -B /alternate/path/to/tmp:/tmp using the volume mount options in Docker or Singularity.
For example in the container engine options:

	Singularity run options: runOptions = '--cleanenv -H $PWD -B /data,/alternate/path/to/tmp:/tmp'

	Docker run options: runOptions = '-i -v /data:/data -v /alternate/path/to/tmp:/tmp'

Configuration

To generate a config file, use the atac_preprocess profile along with docker or singularity.
Note that the full path to vib-singlecell-nf/vsn-pipelines/main_atac.nf must be used:

nextflow config \
 vib-singlecell-nf/vsn-pipelines/main_atac.nf \
 -profile atac_preprocess,singularity \
 > atac_preprocess.config

Note

It is also possible to run the pycisTopic QC steps directly after this atac_preprocess pipeline, with a single command.
Please see
here
for details on how to run with this configuration.

Parameters

The ATAC-specific parameters are described here.
The important parameters to verify are:

	params.data.atac_preprocess.metadata: the path to the metadata file.

	params.tools.bwamaptools.bwa_fasta: the path to the bwa reference fasta file.
This should be already indexed with bwa index, and the index files located in the same directory as the fasta file. Note that bwa and bwa-mem2 use different indexes that are not interchangeable.

	params.tools.singlecelltoolkit.barcode_correction.whitelist: Whitelists for barcode correction are supplied here.
The whitelists are matched to samples based on the parameter key here (‘standard’, ‘multiome’, ‘hydrop_3x96’, ‘hydrop_2x384’, etc.) and the technology field listed for each sample in the metadata file.
Barcode whitelists can (optionally) be gzipped.
There are currently no checks performed to ensure that the sample barcodes have any overlap to the whitelist (the barcode correction reports should be checked for this).

Choice of tools

Several steps have options for the choice of method to use.
These options are controlled within params.atac_preprocess_tools.

	Adapter trimming (adapter_trimming_method): Can be either of Trim_Galore (default), or fastp.

	Duplicate marking (mark_duplicates_method): Can be either of MarkDuplicates (Picard tools, default) or MarkDuplicatesSpark (GATK).
We currently recommend Picard MarkDuplicates because it has the capability to perform barcode-aware marking of PCR duplicates.
MarkDuplicatesSpark has the advantage of parallelization, however it requires a large SSD to use for temporary files.

Additionally:

	Mapping: Use parameter params.tools.bwamaptools.bwa_version to select either bwa or bwa-mem2. These should give virtually identical results, however bwa-mem2, while faster, has used more memory in our tests. Note that the index (bwa_index) is not interchangeable between the versions.

Optional parameters

	Within params.tools.sinto.fragments:

	One of (but not both) barcodetag or barcode_regex needs to be set to tell Sinto where to find the barcodes in the bam file. The default is to use barcodetag of CB.

	mapq: Controls quality filtering settings for generating the fragments file. Discards reads with quality score lower than this number (default 30).

Execution

After configuring, the workflow can be run with:

nextflow -C atac_preprocess.config run \
 vib-singlecell-nf/vsn-pipelines/main_atac.nf \
 -entry atac_preprocess -resume

Output

An example output tree is shown here.

out/
├── data
│ ├── bam
│ │ ├── sample_1.bwa.out.possorted.bam
│ │ ├── sample_1.bwa.out.possorted.bam.bai
│ │ ├── sample_2.bwa.out.possorted.bam
│ │ └── sample_2.bwa.out.possorted.bam.bai
│ ├── fragments
│ │ ├── sample_1.sinto.fragments.tsv.gz
│ │ ├── sample_1.sinto.fragments.tsv.gz.tbi
│ │ ├── sample_2.sinto.fragments.tsv.gz
│ │ └── sample_2.sinto.fragments.tsv.gz.tbi
│ └── reports
│ ├── barcode
│ │ ├── sample_1____S7_R1_001.corrected.bc_stats.log
│ │ └── sample_2____S8_R1_001.corrected.bc_stats.log
│ ├── mapping_stats
│ │ ├── sample_1.mapping_stats.tsv
│ │ └── sample_2.mapping_stats.tsv
│ ├── mark_duplicates
│ │ ├── sample_1.library_complexity_metrics.txt
│ │ ├── sample_1.mark_duplicates_metrics.txt
│ │ ├── sample_2.library_complexity_metrics.txt
│ │ └── sample_2.mark_duplicates_metrics.txt
│ └── trim
│ ├── sample_1____S7_R1_001.fastp.trimming_report.html
│ └── sample_2____S8_R1_001.fastp.trimming_report.html
└── nextflow_reports
 ├── execution_report.html
 ├── execution_timeline.html
 ├── execution_trace.txt
 └── pipeline_dag.dot

scATAC-seq QC and Cell Calling

This workflow uses the Python implementation of cisTopic [https://github.com/aertslab/cisTopic] (pycisTopic) to perform quality control and cell calling.
The inputs here are a fragments and bam file for each sample.

This workflow is currently available in the develop_atac branch (use nextflow pull vib-singlecell-nf/vsn-pipelines -r develop_atac to sync this branch).

Running the workflow

Technical considerations

	Direct the Nextflow work directory to an alternate path (e.g. a scratch drive) using the NXF_WORK environmental variable:

nwork=/path/to/scratch/example_project
mkdir $nwork
export NXF_WORK=$nwork

Note that if you start a new shell, NXF_WORK must be set again, or the pipeline will not resume properly.

	Important for pycisTopic Ray issues: the system default temp location may become full.
A workaround is to include a volume mapping to the alternate /tmp -B /alternate/path/to/tmp:/tmp using the volume mount options in Docker or Singularity.
For example in the container engine options:

	Singularity run options: runOptions = '--cleanenv -H $PWD -B /data,/alternate/path/to/tmp:/tmp'

	Docker run options: runOptions = '-i -v /data:/data -v /alternate/path/to/tmp:/tmp'

	Use the --quiet flag with nextflow run to suppress the printing of each file that is detected by the pipeline.

Configuration

For each sample, this pipeline take a bam and a fragments file.
These can be specified separately, or from a Cell Ranger ATAC/ARC outs/ path.

Input with independent bam and fragments files

Use the profiles bam and fragments:

nextflow config vib-singlecell-nf/vsn-pipelines/main_atac.nf \
 -profile atac_qc_filtering,bam,fragments,vsc,pycistopic_hg38 \
 > atac_qc.config

Preset profiles are available for human (pycistopic_hg38), mouse (pycistopic_mm10), and fly (pycistopic_dmel).
Or, these profiles can be omitted and set manually in the config (biomart, macs2).

Input data (bam and fragments files) are specified in the data section:

data {
 fragments {
 file_paths = '/staging/leuven/stg_00002/lcb/cflerin/analysis/asap/20210527_hydrop-atac_asabr/atac_preprocess/out_run1/data/fragments/ASA__*tsv.gz'
 suffix = '.sinto.fragments.tsv.gz'
 index_extension = '.tbi'
 }
 bam {
 file_paths = '/staging/leuven/stg_00002/lcb/cflerin/analysis/asap/20210527_hydrop-atac_asabr/atac_preprocess/out_run1/data/bam/ASA*bam'
 suffix = '.bwa.out.possorted.bam'
 index_extension = '.bai'
 }
}

Multiple files can be specified with * in file_paths or by separating the paths with a comma.

Warning

The suffix for both bam and fragments will be removed from the filename to get sample IDs.
The sample names obtained must match between bam and fragments for the files to be paired properly in the workflow.

Input with Cell Ranger ATAC data

Use the tenx_atac profile:

nextflow config vib-singlecell-nf/vsn-pipelines/main_atac.nf \
 -profile atac_qc_filtering,tenx_atac,vsc,pycistopic_hg38 \
 > atac_qc.config

Input data (the Cell Ranger outs/ path) are specified in the data section:

data {
 tenx_atac {
 cellranger_mex = '/data/cellranger_atac_2.0/*/outs,/data/processed/cellranger_arc_2.0.0/*/outs'
 }
}

Multiple files can be specified with * in tenx_atac or by separating the paths with a comma.

Input directly from the preprocessing pipeline

It is also possible to run these QC steps directly after the atac_preprocess pipeline, with a single command.
In this case, all the appropriate configuration profiles must be included at the configuration start:

nextflow config vib-singlecell-nf/vsn-pipelines/main_atac.nf \
 -profile atac_preprocess,atac_qc_filtering,pycistopic_hg38,vsc \
 > atac_preprocess_and_qc.config

Note that here, we do not include bam and fragments profiles that specify the input data locations to the QC steps since these are piped directly from the preprocessing pipeline.
One caveat to this is that it could potentially make it harder to run the qc pipeline with -resume later on, especially if the Nextflow work/ directory is not saved due to disk space concerns.

To execute the preprocessing and mapping pipeline in one step, use the atac_preprocess_with_qc entry point:

nextflow -C atac_preprocess_and_qc.config run \
 vib-singlecell-nf/vsn-pipelines/main_atac.nf \
 -entry atac_preprocess_with_qc -resume --quiet

Execution

After configuring, the workflow can be run with:

nextflow -C atac_qc.config run \
 vib-singlecell-nf/vsn-pipelines/main_atac.nf \
 -entry atac_qc_filtering --quiet -resume

After completing, view the report in out/notebooks/<project_name>__pycisTopic_QC_report.html. To change the filtering settings, use the params.tools.pycistopic.call_cells section.

Adjusting the filter settings

In the pycisTopic parameters, filter settings can be applied in this section:

pycistopic {
 call_cells {
 report_ipynb = '/src/pycistopic/bin/pycisTopic_qc_report_template.ipynb'
 use_density_coloring_on_scatterplot = true
 use_detailed_title_on_scatterplot = true
 filter_frags_lower = '1000'
 filter_frags_upper = ''
 filter_tss_lower = '8'
 filter_tss_upper = ''
 filter_frip_lower = ''
 filter_frip_upper = ''
 filter_dup_rate_lower = ''
 filter_dup_rate_upper = ''
 }
}

If a setting is empty (''), this filter will not be applied.
If set to a single value (i.e. filter_frags_lower=1000), this will apply this filter value to all samples.
To use sample-specific filters, this can be written as:

filter_frags_lower = [
 'default': 1000,
 'Sample_1': 1500,
 'Sample_2': 2000,
]

The default setting (optional) is applied to all samples not listed in array.
If this default setting is missing, no filter will be applied to samples not listed in the array (all barcodes kept).

After setting the filters, the pipeline can be re-run to apply the new filters (use -resume).

The additional settings control the output of the scatter plots in the report:
* use_density_coloring_on_scatterplot: Slower when turned on; it can be helpful to set this to false until the proper thresholds are determined.
* use_detailed_title_on_scatterplot: Adds the cell count and median values after filtering to the title of each plot.

Output

An example output tree is shown here.

out/
├── data
│ ├── macs2
│ │ ├── sample_1.peaks.narrowPeak
│ │ ├── sample_1.summits.bed
│ │ ├── sample_2.peaks.narrowPeak
│ │ └── sample_2.summits.bed
│ └── pycistopic
│ └── qc
│ ├── benchmark_library_downsampled__metadata.pickle
│ ├── benchmark_library_downsampled__profile_data.pickle
│ ├── selected_barcodes
│ │ ├── sample_1.cell_barcodes.txt
│ │ └── sample_2.cell_barcodes.txt
│ └── selected_barcodes_nFrag
│ ├── sample_1.barcodes_nFrag_thr.txt
│ └── sample_2.barcodes_nFrag_thr.txt
└── notebooks
 ├── example_project__pycisTopic_QC_report.html
 └── example_project__pycisTopic_QC_report.ipynb

	macs2: contains the narrowPeak and bed file for each sample.

	pycistopic:
* qc: contains Python objects (in pickle format) for the metadata and profile data computed by pycisTopic.

	selected_barcodes: contains a text file with selected cell barcodes (one per line) based on the thresholds set in the config file.

	selected_barcodes_nFrag: contains a text file with barcodes (one per line) that have unique fragment counts greater than the params.tools.pycistopic.compute_qc_stats.n_frag setting in the pycisTopic parameters.

Development Guide

Create module

Tool-based modules are located in src/<tool-name>, and each module has a specific structure for scripts and Nextflow processes (see Repository structure below).

Case study: Add Harmony

Harmony is a method published in Nature Methods [https://www.nature.com/articles/s41592-019-0619-0] that performs integration of single-cell data.

Links:

	GitHub: https://github.com/immunogenomics/harmony

	Tutorial: https://github.com/immunogenomics/harmony/blob/master/vignettes/quickstart.Rmd

Steps:

	Create a new issue on vsn-pipelines GitHub repository explaining which module you are going to add (e.g.: Add Harmony batch correction method).

	Fork the [https://help.github.com/en/github/getting-started-with-github/fork-a-repo] vsn-pipelines repository to your own GitHub account (if you are an external collaborator).

	From your local copy of vsn-pipelines GitHub repository, create a new branch called feature/[github-issue-id]-[description].

In this case,

	[github-issue-id] = 115

	[description] = add_harmony_batch_correction_method

It is highly recommended to start from the develop branch:

git checkout develop
git fetch
git pull
git checkout -b feature/115-add_harmony_batch_correction_method

	Use the template repository [https://github.com/vib-singlecell-nf/template] in the vib-singlecell-nf organisation to create the framework for the new module in src/<tool-name>:

git clone --depth=1 https://github.com/vib-singlecell-nf/template.git src/harmony

	Now, you can start to edit file in the tool module that is now located in src/<tool-name>.
Optionally, you can delete the .git directory in the new module to avoid confusion in future local development:

rm -rf src/harmony/.git

	Create the Dockerfile recipe

FROM dweemx/sctx-seurat:3.1.2

RUN apt-get -y update && \
 apt-get install -y libcurl4-openssl-dev libxml2-dev zlib1g-dev libhdf5-dev && \
 apt-get install -y libssl-dev && \
 # png.h: No such file or directory
 apt-get install -y libpng-dev && \
 R -e "install.packages('optparse')" && \
 R -e "devtools::install_github(repo = 'aertslab/SCopeLoomR')" && \
 R -e "devtools::install_github('immunogenomics/harmony')" && \
 # Need to run ps
 apt-get -y install procps && \
 apt-get -y install libxml2 && \
 # Clean
 rm -rf /tmp/* && \
 apt-get autoremove -y && \
 apt-get autoclean -y && \
 rm -rf /var/cache/apt/* && \
 rm -rf /var/lib/apt/lists/* && \
 apt-get clean

	Rename the nextflow.config file to create the harmony.config configuration file.

	Each process’s options should be in their own level. With a single process, you do not need one extra level.

params {
 sc {
 harmony {
 container = 'vibsinglecellnf/harmony:1.0'
 report_ipynb = "${params.misc.test.enabled ? '../../..' : ''}/src/harmony/bin/reports/sc_harmony_report.ipynb"
 varsUse = ['batch']
 }
 }
}

The report_ipynb Jupyter Notebook is available here [https://github.com/vib-singlecell-nf/harmony/blob/master/bin/reports/sc_harmony_report.ipynb].

	Create the R script to run Harmony

#!/usr/bin/env Rscript

print("##")
print("# Harmony: Algorithm for single cell integration #")
print("##")

Loading dependencies scripts

library("optparse")
parser <- OptionParser(
prog = "run_harmony.R",
description = "Scalable integration of single cell RNAseq data for batch correction and meta analysis"
)
parser <- add_option(
parser,
c("-i", "--input-file"),
action = "store",
default = NULL,
help = "Input file [default]"
)
parser <- add_option(
parser,
c("-a", "--vars-use"),
action = "store",
default = NULL,
help = "If meta_data is dataframe, this defined which variable(s) to remove (character vector)."
)
parser <- add_option(
parser,
c("-p", "--do-pca"),
action = "store",
default = FALSE,
help = "Whether to perform PCA on input matrix."
)
parser <- add_option(
parser,
c("-o", "--output-prefix"),
action = "store",
default = "foo",
help="Prefix path to save output files. [default %default]"
)
parser <- add_option(
parser,
c("-s", "--seed"),
action = "store",
default = 617,
help="Seed. [default %default]"
)

args <- parse_args(parser)

cat("Parameters: \n")
print(args)

if(is.null(args$`vars-use`)) {
 stop("The parameter --vars-use has to be set.")
}

Required by irlba::irlba (which harmony depends on) for reproducibility
if(!is.null(args$seed)) {
set.seed(args$seed)
} else {
warnings("No seed is set, this will likely give none reproducible results.")
}

input_ext <- tools::file_ext(args$`input-file`)

if(input_ext == "h5ad") {
Current fix until https://github.com/satijalab/seurat/issues/2485 is fixed
file <- hdf5r::h5file(filename = args$`input-file`, mode = 'r')
if(!("X_pca" %in% names(x = file[["obsm"]]))) {
 stop("X_pca slot is not found in the AnnData (h5ad).")
}
obs <- file[['obs']][]
pca_embeddings <- t(x = file[["obsm"]][["X_pca"]][,])
row.names(x = pca_embeddings) <- obs$index
colnames(x = pca_embeddings) <- paste0("PCA_", seq(from = 1, to = ncol(x = pca_embeddings)))
metadata <- obs
seurat <- Seurat::ReadH5AD(file = args$`input-file`)
if(!("pca" %in% names(seurat@reductions)) || is.null(x = seurat@reductions$pca))
stop("Expects a PCA embeddings data matrix but it does not exist.")
data <- seurat@reductions$pca
pca_embeddings <- data@cell.embeddings
metadata <- seurat@meta.data
} else {
stop(paste0("Unrecognized input file format: ", input_ext, "."))
}

print(paste0("PCA embeddings matrix has ", dim(x = data)[1], " rows, ", dim(x = data)[2], " columns."))

if(sum(args$`vars-use` %in% colnames(x = metadata)) != length(x = args$`vars-use`)) {
 stop("Some argument value from the parameter(s) --vars-use are not found in the metadata.")
}

Run Harmony
Expects PCA matrix (Cells as rows and PCs as columns.)
harmony_embeddings <- harmony::HarmonyMatrix(
data_mat = pca_embeddings
, meta_data = metadata
, vars_use = args$`vars-use`
, do_pca = args$`do-pca`
, verbose = FALSE
)

Save the results

PCA corrected embeddings

write.table(
 x = harmony_embeddings,
 file = paste0(args$`output-prefix`, ".tsv"),
 quote = FALSE,
 sep = "\t",
 row.names = TRUE,
 col.names = NA
)

	Create the Nextflow process that will run the Harmony R script defined in the previous step.

nextflow.preview.dsl=2

binDir = !params.containsKey("test") ? "${workflow.projectDir}/src/harmony/bin/" : ""

process SC__HARMONY__HARMONY_MATRIX {

 container params.sc.harmony.container
 publishDir "${params.global.outdir}/data/intermediate", mode: 'symlink'
 clusterOptions "-l nodes=1:ppn=${params.global.threads} -l walltime=1:00:00 -A ${params.global.qsubaccount}"

 input:
 tuple val(sampleId), path(f)

 output:
 tuple val(sampleId), path("${sampleId}.SC__HARMONY__HARMONY_MATRIX.tsv")

 script:
 def sampleParams = params.parseConfig(sampleId, params.global, params.sc.harmony)
 processParams = sampleParams.local
 varsUseAsArguments = processParams.varsUse.collect({ '--vars-use' + ' ' + it }).join(' ')
 """
 ${binDir}run_harmony.R \
 --seed ${params.global.seed} \
 --input-file ${f} \
 ${varsUseAsArguments} \
 --output-prefix "${sampleId}.SC__HARMONY__HARMONY_MATRIX"
 """

}

	Create a Nextflow “subworkflow” that will call the Nextflow process defined in the previous step and perform some other tasks (dimensionality reduction, cluster identification, marker genes identification and report generation)

This step is not required. However it this step is skipped, the code would still need to added into the main harmony workflow (workflows/harmony.nf, see the next step)

nextflow.preview.dsl=2

//
// process imports:

include {
 clean;
} from '../../utils/processes/utils.nf' params(params)
include {
 COMBINE_BY_PARAMS;
} from "../../utils/workflows/utils.nf" params(params)
include {
 PUBLISH as PUBLISH_BEC_OUTPUT;
 PUBLISH as PUBLISH_BEC_DIMRED_OUTPUT;
 PUBLISH as PUBLISH_FINAL_HARMONY_OUTPUT;
} from "../../utils/workflows/utils.nf" params(params)

include {
 SC__HARMONY__HARMONY_MATRIX;
} from './../processes/runHarmony.nf' params(params)
include {
 SC__H5AD_UPDATE_X_PCA;
} from './../../utils/processes/h5adUpdate.nf' params(params)
include {
 NEIGHBORHOOD_GRAPH;
} from './../../scanpy/workflows/neighborhood_graph.nf' params(params)
include {
 DIM_REDUCTION_TSNE_UMAP;
} from './../../scanpy/workflows/dim_reduction.nf' params(params)
include {
 SC__SCANPY__CLUSTERING_PARAMS;
} from './../../scanpy/processes/cluster.nf' params(params)
include {
 CLUSTER_IDENTIFICATION;
} from './../../scanpy/workflows/cluster_identification.nf' params(params) // Don't only import a specific process (the function needs also to be imported)

// reporting:
include {
 GENERATE_DUAL_INPUT_REPORT
} from './../../scanpy/workflows/create_report.nf' params(params)

//
// Define the workflow

workflow BEC_HARMONY {

 take:
 normalizedTransformedData
 dimReductionData
 // Expects (sampleId, anndata)
 clusterIdentificationPreBatchEffectCorrection

 main:
 // Run Harmony
 harmony_embeddings = SC__HARMONY__HARMONY_MATRIX(
 dimReductionData.map {
 it -> tuple(it[0], it[1])
 }
)
 SC__H5AD_UPDATE_X_PCA(
 dimReductionData.map {
 it -> tuple(it[0], it[1])
 }.join(harmony_embeddings)
)

 PUBLISH_BEC_OUTPUT(
 SC__H5AD_UPDATE_X_PCA.out,
 "BEC_HARMONY.output",
 "h5ad",
 null,
 false
)

 NEIGHBORHOOD_GRAPH(
 SC__H5AD_UPDATE_X_PCA.out.join(
 dimReductionData.map {
 it -> tuple(it[0], it[2], *it[3..(it.size()-1)])
 }
)
)

 // Run dimensionality reduction
 DIM_REDUCTION_TSNE_UMAP(NEIGHBORHOOD_GRAPH.out)

 PUBLISH_BEC_DIMRED_OUTPUT(
 DIM_REDUCTION_TSNE_UMAP.out.dimred_tsne_umap,
 "BEC_HARMONY.dimred_output",
 "h5ad",
 null,
 false
)

 // Run clustering
 // Define the parameters for clustering
 def clusteringParams = SC__SCANPY__CLUSTERING_PARAMS(clean(params.sc.scanpy.clustering))
 CLUSTER_IDENTIFICATION(
 normalizedTransformedData,
 DIM_REDUCTION_TSNE_UMAP.out.dimred_tsne_umap,
 "Post Batch Effect Correction (Harmony)"
)

 marker_genes = CLUSTER_IDENTIFICATION.out.marker_genes.map {
 it -> tuple(
 it[0], // sampleId
 it[1], // data
 !clusteringParams.isParameterExplorationModeOn() ? null : it[2..(it.size()-1)], // Stash params
)
 }

 PUBLISH_FINAL_HARMONY_OUTPUT(
 marker_genes.map {
 it -> tuple(it[0], it[1], it[2])
 },
 "BEC_HARMONY.final_output",
 "h5ad",
 null,
 clusteringParams.isParameterExplorationModeOn()
)

 // This will generate a dual report with results from
 // - Pre batch effect correction
 // - Post batch effect correction
 becDualDataPrePost = COMBINE_BY_PARAMS(
 clusterIdentificationPreBatchEffectCorrection,
 // Use PUBLISH output to avoid "input file name collision"
 PUBLISH_FINAL_HARMONY_OUTPUT.out,
 clusteringParams
)
 harmony_report = GENERATE_DUAL_INPUT_REPORT(
 becDualDataPrePost,
 file(workflow.projectDir + params.sc.harmony.report_ipynb),
 "SC_BEC_HARMONY_report",
 clusteringParams.isParameterExplorationModeOn()
)

 emit:
 data = CLUSTER_IDENTIFICATION.out.marker_genes
 cluster_report = CLUSTER_IDENTIFICATION.out.report
 harmony_report

}

	In the vsn-pipelines, create a new main workflow called harmony.nf under workflows/:

nextflow.preview.dsl=2

//
// Import sub-workflows/processes from the utils module:
include {
 getBaseName
} from '../src/utils/processes/files.nf'
include {
 clean;
 SC__FILE_CONVERTER;
 SC__FILE_CONCATENATOR
} from '../src/utils/processes/utils.nf' params(params)
include {
 COMBINE_BY_PARAMS
} from '../src/utils/workflows/utils.nf' params(params)
include {
 SC__H5AD_TO_FILTERED_LOOM
} from '../src/utils/processes/h5adToLoom.nf' params(params)
include {
 FILE_CONVERTER
} from '../src/utils/workflows/fileConverter.nf' params(params)
include {
 UTILS__GENERATE_WORKFLOW_CONFIG_REPORT
} from '../src/utils/processes/reports.nf' params(params)

//
// Import sub-workflows/processes from the tool module:
include {
 QC_FILTER
} from '../src/scanpy/workflows/qc_filter.nf' params(params)
include {
 NORMALIZE_TRANSFORM
} from '../src/scanpy/workflows/normalize_transform.nf' params(params)
include {
 HVG_SELECTION
} from '../src/scanpy/workflows/hvg_selection.nf' params(params)
include {
 NEIGHBORHOOD_GRAPH
} from '../src/scanpy/workflows/neighborhood_graph.nf' params(params)
include {
 DIM_REDUCTION_PCA
} from '../src/scanpy/workflows/dim_reduction_pca.nf' params(params)
include {
 DIM_REDUCTION_TSNE_UMAP
} from '../src/scanpy/workflows/dim_reduction.nf' params(params)
// cluster identification
include {
 SC__SCANPY__CLUSTERING_PARAMS
} from '../src/scanpy/processes/cluster.nf' params(params)
include {
 CLUSTER_IDENTIFICATION
} from '../src/scanpy/workflows/cluster_identification.nf' params(params)
include {
 BEC_HARMONY
} from '../src/harmony/workflows/bec_harmony.nf' params(params)
// reporting:
include {
 SC__SCANPY__MERGE_REPORTS
} from '../src/scanpy/processes/reports.nf' params(params)
include {
 SC__SCANPY__REPORT_TO_HTML
} from '../src/scanpy/processes/reports.nf' params(params)

workflow harmony {

 take:
 data

 main:
 out = data | \
 SC__FILE_CONVERTER | \
 FILTER_AND_ANNOTATE_AND_CLEAN

 if(params.sc.scanpy.containsKey("filter")) {
 out = QC_FILTER(out).filtered // Remove concat
 }
 if(params.sc.containsKey("file_concatenator")) {
 out = SC__FILE_CONCATENATOR(
 out.map {
 it -> it[1]
 }.toSortedList(
 { a, b -> getBaseName(a, "SC") <=> getBaseName(b, "SC") }
)
)
 }
 if(params.sc.scanpy.containsKey("data_transformation") && params.sc.scanpy.containsKey("normalization")) {
 out = NORMALIZE_TRANSFORM(out)
 }
 out = HVG_SELECTION(out)
 DIM_REDUCTION_PCA(out)
 NEIGHBORHOOD_GRAPH(DIM_REDUCTION_PCA.out)
 DIM_REDUCTION_TSNE_UMAP(NEIGHBORHOOD_GRAPH.out)

 // Perform the clustering step w/o batch effect correction (for comparison matter)
 clusterIdentificationPreBatchEffectCorrection = CLUSTER_IDENTIFICATION(
 NORMALIZE_TRANSFORM.out,
 DIM_REDUCTION_TSNE_UMAP.out.dimred_tsne_umap,
 "Pre Batch Effect Correction"
)

 // Perform the batch effect correction
 BEC_HARMONY(
 NORMALIZE_TRANSFORM.out,
 // include only PCA since Harmony will correct this
 DIM_REDUCTION_PCA.out,
 clusterIdentificationPreBatchEffectCorrection.marker_genes
)

 // Conversion
 // Convert h5ad to X (here we choose: loom format)
 if(params.sc.containsKey("file_concatenator")) {
 filteredloom = SC__H5AD_TO_FILTERED_LOOM(SC__FILE_CONCATENATOR.out)
 scopeloom = FILE_CONVERTER(
 BEC_HARMONY.out.data.groupTuple(),
 'HARMONY.final_output',
 'loom',
 SC__FILE_CONCATENATOR.out
)
 } else {
 filteredloom = SC__H5AD_TO_FILTERED_LOOM(SC__FILE_CONVERTER.out)
 scopeloom = FILE_CONVERTER(
 BEC_HARMONY.out.data.groupTuple(),
 'HARMONY.final_output',
 'loom',
 SC__FILE_CONVERTER.out
)
 }

 project = CLUSTER_IDENTIFICATION.out.marker_genes.map { it -> it[0] }
 UTILS__GENERATE_WORKFLOW_CONFIG_REPORT(
 file(workflow.projectDir + params.utils.workflow_configuration.report_ipynb)
)

 // Collect the reports:
 // Define the parameters for clustering
 def clusteringParams = SC__SCANPY__CLUSTERING_PARAMS(clean(params.sc.scanpy.clustering))
 // Pairing clustering reports with bec reports
 if(!clusteringParams.isParameterExplorationModeOn()) {
 clusteringBECReports = BEC_HARMONY.out.cluster_report.map {
 it -> tuple(it[0], it[1])
 }.combine(
 BEC_HARMONY.out.harmony_report.map {
 it -> tuple(it[0], it[1])
 },
 by: 0
).map {
 it -> tuple(it[0], *it[1..it.size()-1], null)
 }
 } else {
 clusteringBECReports = COMBINE_BY_PARAMS(
 BEC_HARMONY.out.cluster_report.map {
 it -> tuple(it[0], it[1], *it[2])
 },
 BEC_HARMONY.out.harmony_report,
 clusteringParams
)
 }
 ipynbs = project.combine(
 UTILS__GENERATE_WORKFLOW_CONFIG_REPORT.out
).join(
 HVG_SELECTION.out.report.map {
 it -> tuple(it[0], it[1])
 }
).combine(
 clusteringBECReports,
 by: 0
).map {
 it -> tuple(it[0], it[1..it.size()-2], it[it.size()-1])
 }

 // reporting:
 SC__SCANPY__MERGE_REPORTS(
 ipynbs,
 "merged_report",
 clusteringParams.isParameterExplorationModeOn()
)
 SC__SCANPY__REPORT_TO_HTML(SC__SCANPY__MERGE_REPORTS.out)

 emit:
 filteredloom
 scopeloom

}

	Add a new Nextflow profile in the profiles section of the main nextflow.config of the vsn-pipelines repository:

profiles {

 harmony {
 includeConfig 'src/scanpy/scanpy.config'
 includeConfig 'src/harmony/harmony.config'
 }
 ...
}

	Finally add a new entry in main.nf of the vsn-pipelines repository

// run multi-sample with bbknn, output a scope loom file
workflow harmony {

 include {
 harmony as HARMONY
 } from './workflows/harmony' params(params)
 include {
 PUBLISH as PUBLISH_HARMONY
 } from "./src/utils/workflows/utils" params(params)

 getDataChannel | HARMONY
 PUBLISH_HARMONY(
 HARMONY.out.scopeloom,
 "HARMONY",
 "loom",
 null,
 false
)

}

You should now be able to configure (nextflow config ...) and run the harmony pipeline (nextflow run ...).

	After confirming that your module is functional, you should create a pull request to merge your changes into the develop branch.

	Make sure you have removed all references to TEMPLATE in your repository

	Include some basic documentation for your module so people know what it does and how to use it.

The pull request will be reviewed and accepted once it is confirmed to be working. Once the develop branch is merged into master, the new tool will be part of the new release of VSN Pipelines!

Repository structure

Root

The repository root contains a main.nf and associated nextflow.config.
The root main.nf imports and calls sub-workflows defined in the modules.

Modules

A “module” consists of a folder labeled with the tool name (Scanpy, SCENIC, utils, etc.), with subfolders for

	bin/ (scripts passed into the container)

	processes/ (where Nextflow processes are defined)

The root of the modules folder contains workflow files + associated configs (as many as there are workflows):

	main.nf + nextflow.config

	single_sample.nf + scenic.config

	…

src/
├── cellranger
│ ├── main.nf
│ ├── nextflow.config
│ └── processes
│ ├── count.nf
│ └── mkfastq.nf
│
├── channels
│ └── tenx.nf
│
├── scenic
│ ├── bin
│ │ ├── grnboost2_without_dask.py
│ ├── processes
│ │ ├── aucell.nf
│ │ ├── cistarget.nf
│ │ ├── grnboost2withoutDask.nf
│ ├── main.nf
│ └── scenic.config
│
└── utils
 ├── bin
 │ ├── h5ad_to_loom.py
 │ ├── sc_file_concatenator.py
 │ └── sc_file_converter.py
 ├── utils.config
 └── processes
 ├── files.nf
 ├── h5ad_to_loom.nf
 ├── utils_1.test.nf
 ├── utils_2.test.nf
 └── utils.nf

Workflows

Workflows (chains of nf processes) are defined in the module root folder (e.g. src/Scanpy/bec_bbknn.nf [https://github.com/vib-singlecell-nf/vsn-pipelines/blob/module_refactor/src/scanpy/bec_bbknn.nf])
Workflows import multiple processes and define the workflow by name:

include SC__CELLRANGER__MKFASTQ from './processes/mkfastq' params(params)
include SC__CELLRANGER__COUNT from './processes/count' params(params)

workflow CELLRANGER {

 main:
 SC__CELLRANGER__MKFASTQ(file(params.sc.cellranger.mkfastq.csv), path(params.sc.cellranger.mkfastq.runFolder))
 SC__CELLRANGER__COUNT(file(params.sc.cellranger.count.transcriptome), SC__CELLRANGER__MKFASTQ.out.flatten())
 emit:
 SC__CELLRANGER__COUNT.out

}

Workflow imports

Entire sub-workflows can also be imported in other workflows with one command (inheriting all of the process imports from the workflow definition):

include CELLRANGER from '../cellranger/main.nf' params(params)

This leads to the ability to easily define high-level workflows in the master nf file: vib-singlecell-nf/vsn-pipelines/main.nf:

include CELLRANGER from './src/cellranger/main.nf' params(params)
include BEC_BBKNN from './src/scanpy/bec_bbknn.nf' params(params)
include SCENIC from './src/scenic/main.nf' params(params)

workflow {

 CELLRANGER()
 BEC_BBKNN(CELLRANGER.out)
 SCENIC(BEC_BBKNN.out)

}

Parameters structure

Parameters are stored in a separate config file per workflow, plus the main nextflow.config.
These parameters are merged when starting the run using e.g.:

includeConfig 'src/scenic/nextflow.config'

The parameter structure internally (post-merge) is:

params {
 global {
 baseFilePath = "/opt/vib-singlecell-nf"
 project_name = "MCF7"
 ...
 }
 sc {
 utils {
 file_converter {
 ...
 }
 file_annotator {
 ...
 }
 file_concatenator {
 ...
 }
 }
 scanpy {
 container = 'docker://vib-singlecell-nf/scanpy:0.5.0'
 filter {
 ...
 }
 data_transformation {
 ...
 }
 normalization {
 ...
 }
 feature_selection {
 ...
 }
 feature_scaling {
 ...
 }
 dim_reduction {
 pca {
 method = 'pca'
 ...
 }
 umap {
 method = 'tsne'
 ...
 }
 }
 batch_effect_correct {
 ...
 }
 clustering {
 ...
 }
 }
 }
}

Module testing

Modules and processes can be tested independently, you can find an example in src/utils/main.test.nf.

The SC__FILE_CONVERTER process is tested against the tiny dataset available in data/01.count.

Attributions

VSN-Pipelines is a collection of workflows targeted toward the analysis of single cell data.
VSN is dependendent on, and takes functions from many tools, developed both internally and externally, which are listed here.

Tools

	GreenleafLab/ArchR [https://github.com/GreenleafLab/ArchR]

	caleblareau/bap [https://github.com/caleblareau/bap]

	lh3/bwa [https://github.com/lh3/bwa]

	Samtools [http://www.htslib.org/]

	campbio/celda [https://github.com/campbio/celda]

	Directs

	DropletUtils [https://bioconductor.org/packages/devel/bioc/html/DropletUtils.html]

	Drop-seq Tools [http://mccarrolllab.org/dropseq/]

	EDirect [https://dataguide.nlm.nih.gov/edirect/documentation.html]

	OpenGene/fastp [https://github.com/OpenGene/fastp]

	hangnoh/flybaseR [https://github.com/hangnoh/flybaseR]

	dweemx/flybaseR [https://github.com/dweemx/flybaseR]

	immunogenomics/harmony [https://github.com/immunogenomics/harmony]

	pcacv

	Picard [https://broadinstitute.github.io/picard/]

	statgen/popscle [https://github.com/statgen/popscle]

	aertslab/popscle_helper_tools [https://github.com/aertslab/popscle_helper_tools]

	aertslab/cisTopic [https://github.com/aertslab/cisTopic]

	theislab/scanpy [https://github.com/theislab/scanpy]

	aertslab/pySCENIC [https://github.com/aertslab/pySCENIC]

	aertslab/SCENIC [https://github.com/aertslab/SCENIC]

	swolock/scrublet [https://github.com/swolock/scrublet]

	aertslab/single_cell_toolkit [https://github.com/aertslab/single_cell_toolkit]

	timoast/sinto [https://github.com/timoast/sinto]

	constantAmateur/SoupX [https://github.com/constantAmateur/SoupX]

	ncbi/sra-tools [https://github.com/ncbi/sra-tools]

	alexdobin/STAR [https://github.com/alexdobin/STAR]

	Trim Galore [https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/]

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 VSN-Pipelines

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

